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Abstract 

Students' performance in understanding and developing algorithms from numerical methods is 

crucial because these concepts require them to engage in reasoning. DL-CA facilitates learning for 

fifth-semester bachelor students, specifically those in mathematics education, in comprehending 

numerical methods, algorithm concepts, and program development. Computer-assisted learning is 

appropriate for internalizing discovery learning and supporting autonomous study. The condition that 

differentiates individual learners is the level of self-regulated learning (SRL), which significantly 

enhances reasoning abilities by enabling goal setting, progress monitoring, and strategy adaptation, 

resulting in improved critical analysis and problem-solving skills. This grounded theory research 

investigates the reasoning outcomes of students in learning algorithm concepts for non-linear 

equation problems using computer-assisted discovery learning (DL-CA) through a web platform. It 

examines levels of self-regulated learning (SRL) and explores students' reasoning perspectives to 

describe differences in each level of SRL. Data analysis involved open coding through to 

categorization as essential steps in grounded theory, supported by method triangulation to enhance 

the validity and reliability of the findings. It was conducted using HyperRESEARCH output, a tool 

that aids in following comprehensive qualitative research procedures. The output suggests the 

following conjecture: The reasoning abilities of students in the high self-regulated learning (SRL) 

group encompass four categories: memorization, algorithm, plausibility, and mathematical 

foundation. In contrast, students in the medium and low SRL groups only demonstrate imitative 

reasoning abilities. Novel reasoning abilities are not sufficiently explained by these students, 

potentially due to limitations in the instruments or misunderstandings of the problems. 
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1. INTRODUCTION 

Mathematical reasoning is a core aspect of both mathematics and computer science 

education, especially in solving complex problems (Angraini et al., 2023; Desti et al., 2020; 

https://doi.org/10.22460/infinity.v14i1.p259-282
mailto:wahyudin.mat@upi.edu
https://doi.org/10.22460/infinity.v14i1.p259-282
https://creativecommons.org/licenses/by-sa/4.0/


 Siregar, Wahyudin, & Herman, Case study in a grounded theory perspective: Students' …  260 

Palinussa et al., 2021; Rohaeti et al., 2019; Sari & Hidayat, 2019). Strong reasoning abilities 

enable students not only to solve problems but also to understand the underlying theories 

that support their solutions (Hidayat et al., 2022; Maulida et al., 2024b; Schoenfeld, 2014). 

In this study, mathematical reasoning is essential for evaluating students' ability to develop 

algorithms to solve non-linear equations (Lithner, 2008). Mathematics students, in 

particular, are expected to have a deep understanding of mathematical theories and concepts, 

which contributes to their reasoning abilities (Aisyah et al., 2023; Hidayat et al., 2018; 

Nuraziza et al., 2022).  

Students in mathematics education often encounter significant challenges when 

applying theoretical concepts in real-world program development, especially for solving 

non-linear problems. Many students struggle to transition from theory to practical 

application, This highlights a gap between   their academic knowledge and the skills needed 

to address complex, real-world situations (Hattie & Timperley, 2007). Mathematics 

education students may find it difficult to solve non-routine, story-based problems that 

reflect everyday scenarios, particularly when these problems cannot be solved using purely 

analytical methods. Although they might understand theoretical solutions, many students 

lack familiarity with numerical methods and are often unsure of how to use computational 

tools, such as programming or algorithm development, to approach these problems 

numerically. Consequently, enhancing students’ reasoning skills and equipping them to 

integrate numerical methods with computer-assisted tools are essential steps. This requires 

adopting effective, student-centered learning strategies to support their understanding and 

practical application of mathematics problem (Hattie & Timperley, 2007). 

To enhance students' reasoning abilities, an appropriate learning approach is 

essential, as its structure supports the reasoning process by guiding students to explore, 

question, and make connections autonomously (Anazifa & Djukri, 2017). Students follow 

steps like problem identification, exploration, hypothesis formation, testing, and conclusion 

drawing, which effectively facilitate the development of their reasoning skills. Discovery 

Learning is a pedagogical approach that emphasizes active student engagement in this 

process, encouraging learners to discover concepts independently. However, one limitation 

of this approach is that students may experience confusion or difficulty when encountering 

complex concepts on their own (Hwang & Oh, 2021). This drawback can be minimized with 

computer assistance, allowing students to access immediate feedback, simulations, and 

guided resources to support their exploration. This method, known as Computer-Assisted 

Discovery Learning (DL-CA), combines the strengths of discovery-based learning with 

computational support, enhancing engagement and comprehension (Corazza et al., 2021). 

By integrating technology into the learning process, students are better equipped to navigate 

challenges and develop a more profound understanding of the material (Lee et al., 2016). 

However, Computer-Assisted Discovery Learning (DL-CA) requires students to 

have a strong awareness of the importance of learning and the ability to study independently. 

Students must manage their own learning pace, make decisions, and persevere through 

challenges without constant instructor guidance (Azmi & Arfianti, 2021). This self-

regulation skill is crucial, as it enables students to fully engage in the discovery process and 

take ownership of their learning journey, fostering deeper understanding and improved 
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reasoning abilities (Sudirman et al., 2017). Since self-regulated learning (SRL) varies among 

individuals, it becomes a key factor that differentiates learning outcomes and reasoning skills 

(Yandari et al., 2018). Students with higher SRL are better equipped to set personal goals, 

monitor their progress, and adapt strategies, allowing them to overcome challenges 

effectively (Delima et al., 2024; Pertiwi et al., 2021; Van Gog et al., 2011). This adaptability 

not only helps them grasp concepts but also enables them to apply these concepts in various 

contexts, thereby enhancing their problem-solving abilities and promoting a capacity for 

independent, lifelong learning (Xiao et al., 2019).  

In Computer-Assisted Discovery Learning (DL-CA), students require a high degree 

of independence to revisit and reinforce their understanding of complex material with limited 

guidance, ultimately fostering both competence and confidence in mathematical reasoning. 

This independence is essential for the development of students' reasoning abilities, as 

learners who take initiative in managing their own study processes are more effective in 

grasping algorithmic and programming concepts (Pape et al., 2002; Zimmerman & Schunk, 

2013). Students who demonstrate strong self-management skills not only engage more 

deeply with the content but also develop critical self-regulated learning strategies that 

empower them to navigate their educational journeys. Those who show greater effectiveness 

in understanding and applying the concepts taught highlight the necessity of fostering 

independent learning strategies to enhance mathematical reasoning (Talib et al., 2019). 

The interplay between reasoning and self-regulated learning requires approaches that 

develop reasoning abilities while encouraging students to take charge of their own learning. 

Discovery learning, particularly when supported by computer assistance and designed to 

facilitate SRL, is an effective method for enhancing students' reasoning abilities. By 

providing illustrations, images, and interactive media, Computer-Assisted Learning (CAL) 

helps students better understand and develop algorithms (Gibson, 2001). This approach not 

only supports self-regulated learning but also offers guidance through clear, student-centered 

instruction (Clark & Mayer, 2016). Building on these foundational concepts, it is important 

to explore the integration of self-regulated learning (SRL) strategies within Computer-

Assisted Discovery Learning (DL-CA) to enhance mathematical reasoning among students. 

This study will investigate how DL-CA, supported by SRL, can create a more effective 

learning environment to improve mathematical reasoning. By developing a structured 

framework that incorporates tailored SRL strategies into the DL-CA context, students will 

have the opportunity to personalize their learning experiences while benefiting from the 

interactive features of computer-assisted tools. The study examine the impact of this 

integrated approach on various facets of mathematical reasoning, including the ability to 

memorize essential concepts, apply algorithmic thinking to solve problems, evaluate the 

plausibility of solutions, generate novel approaches to challenges and reinforcing 

mathematical foundations accros SRL, to describe enhancement of  students' reasoning 

abilities. 
 

2. METHOD 

This study employs a qualitative research methodology to investigate students' 

reasoning outcomes in learning algorithm concepts and developing programs for non-linear 
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equation problems. A qualitative approach was chosen as it allows for an in-depth and 

detailed examination of individual or small group experiences within a specific context, 

utilizing grounded theory methodology. The context of this study involves mathematics 

education students enrolled in the Numerical Algorithms and Programming course. A 

purposive selection of 33 participants was made, with 5 participants chosen from each level 

of: high, medium, and low. The research process began with the selection of research 

samples, implementation of the research treatment, and the identification of grounded study 

objects. Subsequently, data analysis was conducted in three stages: open coding, axial 

coding, and selective coding. The overall research steps are depicted in the flowchart 

illustrated in Figure 1 (Charmaz, 2014; Creswell, 2014; Glaser & Strauss, 2017). 
 

 

Figure 1.  Grounded theory research procedure 
 

In Figure 1, the grounded theory research process begins with a literature review to 

understand relevant theories, followed by data collection and organization. The data is then 

analyzed through three stages of coding: open coding breaks the data into initial concepts, 

axial coding connects these concepts into categories and subcategories, and selective coding 

identifies the core category that summarizes the emerging theory (Creswell, 2014; Glaser & 

Strauss, 2017). Once the theory is constructed, the researcher develops a conjunction of 

theory, which synthesizes the main concepts (Lukman et al., 2022; Sudirman et al., 2024). 

Grounded theory, originally developed by Glaser and further advanced by Charmaz, focuses 

not only on discovering "objective facts" but also on researchers' interpretations formed 

through their interactions with the data. Grounded theory, originally developed by Glaser 

and further advanced by Charmaz, focuses not only on discovering "objective facts" but also 

on researchers' interpretations formed through their interactions with the data. This approach 

makes the final stage essential for constructing a theoretical model and validating findings 

through methods such as member checking, contextual completeness, dependability, 

confirmability, and transferability, utilizing appropriate instruments, data collection, and 

analysis techniques  (Charmaz, 2014). 
 

2.1. Research Instruments 

In the study, the primary instrument was developed by the researcher, supported by 

two types of written instruments: a Mathematical Reasoning Ability Test and a Self-

Validating: 

member checking, 

contextual 

completeness, 

dependability, 

confirmability, & 

transferability 
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Regulated Learning (SRL) Questionnaire, to gather data.: a Mathematical Reasoning Ability 

Test and a Self-Regulated Learning (SRL) Questionnaire. The Mathematical Reasoning 

Ability Test aimed to assess students' reasoning skills in creating algorithms and solving 

non-linear equations, including three questions across five reasoning categories: 

memorization, algorithm, plausibility, novelty, and mathematical foundation. To ensure 

validity and reliability, the test was based on established mathematical reasoning 

frameworks and was reviewed for alignment with these categories. The SRL Questionnaire, 

adapted from a validated and reliable SRL scale, measured students' levels of self-regulated 

learning, with items carefully aligned to SRL constructs to confirm its appropriateness for 

the study. Both instruments served as the basis for interviews conducted to provide in-depth 

qualitative data, complementing the tests and questionnaire. These interviews were designed 

as open-ended questions to explore students’ thought processes, allowing for detailed and 

focused responses. Emphasizing the validity and reliability of these instruments strengthens 

the study’s findings, ensuring that the tools effectively capture both reasoning abilities and 

self-regulated learning skills. 
 

2.2. Data Collection Techniques 

The data were collected from three main sources: reasoning ability test scores, an 

SRL questionnaire, and interviews. The reasoning ability test was administered to 33  

students, with scores collected both before and after the learning process to assess changes 

in their reasoning skills. The SRL questionnaire was administered to all students, and 15 

students were selected based on their responses for further analysis to evaluate their self-

regulated learning strategies. Based on the SRL scores, students were categorized into three 

groups: low   SRL (53-105), medium SRL (106 -156), and high SRL (157-208). Five students 

from each SRL group were selected for interviews to gain deeper insights into their 

experiences and explore how their self-regulated learning strategies influenced their 

reasoning abilities. Additionally, interviews were conducted with students from each SRL 

group to provide a more comprehensive understanding of the relationship between self-

regulated learning and reasoning skills. 
 

2.3. Data Analysis Techniques 

Qualitative analysis from a grounded theory perspective begins with the collection 

of written data in the form of reasoning ability tests and self-regulated learning (SRL) 

questionnaires, as well as interviews to explore the relationship between mathematical 

reasoning abilities and SRL. The collected data is then analyzed through three coding stages: 

open coding, axial coding, and selective coding (Creswell, 2014). In the open coding stage, 

the data is broken into smaller parts and labeled to identify initial patterns. The qualitative 

analysis software, HyperResearch, is used in the open coding stage to organize and analyze 

the information gathered from interviews and questionnaires, facilitating the researcher in 

systematically identifying and categorizing important concepts. Next, in the axial coding 

stage, relevant codes are grouped into larger categories, illustrating the relationships between 

various concepts (Charmaz, 2014; Creswell, 2014). The final stage, selective coding, 

identifies the core category that links these findings into a broader theory concerning the 

relationship between SRL and reasoning abilities (Glaser & Strauss, 2017). Once the theory 
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is constructed, the theory construction stage is carried out to explain the relationship between 

SRL and reasoning abilities in the context of learning. The resulting theoretical conjecture 

is tested through several validation techniques: member checking to verify the alignment of 

findings with participants' perspectives, contextual completeness to ensure the theory 

encompasses all relevant contexts, dependability to check the stability of findings, 

confirmability to confirm the results originate from valid data, and transferability to ensure 

the findings can be applied to similar contexts (Creswell, 2014). After going through this 

validation process, the theory that is formed is accepted as a conjecture describing the 

relationship between mathematical reasoning abilities and self-regulated learning (SRL). 
 

3. RESULTS AND DISCUSSION 

3.1. Results 

The reasoning test data for 33 students are grouped based on SRL classification as 

follows: students with high SRL (scores 157-208), medium SRL (scores 106-156), and low 

SRL (scores 55-105). Each group has a specific number of students and an average 

mathematical reasoning ability score describe in the following Table 1. 

Table 1. Reasoning ability test scores based on SRL level 

Learning SRL Level Frequency(N) Mean Std. Dev 

DL-CA 

High 16 77.38   6.29 

Medium 12 58.48   7.18 

Low 5 33.09 17.50 

Total 33 63.80 15.66 

 

The distribution, mean, and standard deviation of students at each level of self-

regulated learning (SRL) have been presented in Table 1. In the high SRL group, there are 

16 students with an average mathematical reasoning score of 77.38 and a standard deviation 

of 6.29, indicating that students with high SRL tend to have strong reasoning abilities, with 

scores that are relatively consistent within the group. In the medium SRL group, consisting 

of 12 students, the average reasoning score is 58.48 with a standard deviation of 7.18. This 

suggests that students with medium SRL have moderate reasoning abilities, slightly lower 

than the high SRL group, with a slightly greater variation in scores. Meanwhile, the low SRL 

group, consisting of 5 students, has the lowest average reasoning score at 33.09, with a 

standard deviation of 17.50, indicating the lowest reasoning ability and significant score 

variation within the group. Overall, with an average mathematical reasoning score of 63.80 

and a standard deviation of 15.66 across all groups, these results indicate a difference in 

reasoning abilities based on SRL levels, with higher SRL associated with higher average 

reasoning scores. The analysis results show variations in students' mathematical reasoning 

abilities based on their level of self-regulated learning (SRL). The analysis results indicate 

that there is a direct relationship between reasoning ability and SRL level, suggesting a 

progressive increase in reasoning skills as SRL levels rise. This finding serves as an initial 

step toward a deeper examination of the relationship between SRL and reasoning abilities, 

allowing researchers to make conjectures on how SRL may impact mathematical reasoning. 
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Conjectures on Mathematical Reasoning Abilities at Each SRL Level Obtained Through 

Grounded Theory Analysis: 

3.1.1. Open Coding 

Open coding was performed on the written responses from the mathematical 

reasoning test and interviews by dividing the data into small segments and assigning codes 

to represent the meaning of each segment. Each question and sub-question reflects 

mathematical reasoning abilities based on framework of Lithner's (2008), which includes 

memorization reasoning, algorithmic reasoning, plausible reasoning, novelty reasoning, and 

mathematics foundation reasoning. Identification using HyperRESEARCH provided an 

overview of six mathematical reasoning abilities for each case, categorized by students' Self-

Regulated Learning (SRL) scores (high, medium, and low). The identification resulted in 

codes, sub-categories, and categories at each SRL level as follows. 
 

Open Coding for High-group of SRL 

In the high SRL group, convergence from interviews with 5 respondents resulted in 

153 codes, 36 sub-categories, and 15 categories reflecting mathematical reasoning abilities 

(see Table 2). 

Table 2. Sub-categories and categories to define reasoning abilities in high SRL 

Sub-Category Category 

Formula of quadratic solution, Formula x = (-b ± √(b² - 4ac)) / 2a,  Remembering the 

Quadratic Function 

Root Formula 

Function Factorization, Factorization Method, Guessing values x₁ + x₂ 

= -3 and x₁x₂ = -5, Perfect Square, Variable Squaring Method 

Remembering 

Function Factorization 

Table Method (Trial and Error), Table Method (Trying Different x 

Values) 

Misconception of 

Analytical Calculation 

Bisection Algorithm, Formulating Bisection Steps, Bisection Algorithm 

Iteration Process, Pseudo Code for Bisection Algorithm, Writing 

Pseudo Code in a Programming Language, Bisection Algorithm 

Flowchart, Simple Flowchart for Bisection Steps 

Bisection Algorithm 

Determining New Bounds in the Bisection Algorithm, Choosing 

Bounds [a:b] that Contain a Solution if f(a)⋅f(b)<0f(a), Determining 

New Bounds and Replacing Old Bounds, Dividing Bounds, Halving the 

Range, Range Division, Midpoint, Range Iteration 

Determining Bounds 

Iteration Table, Documenting Each Iteration, Record Iterations Iteration Table 

Stopping After the 4th Iteration, Ending Iteration, Result Approaching 

Solution, 4th Iteration, Continuing Iterations, Further Iterations, Result 

Improvement, Result Validation. 

Stopping Iterations 

Determining Tolerance, Tolerance Value, Iteration Tolerance, 

Tolerance Bound 

Determining 

Tolerance 

Choosing New Bounds, Evaluating Function Values, Bound Selection, 

Checking Bounds, Bounds Contain Solution, Testing Bounds, 

Evaluating f(a)⋅f(b)<0, Checking Function Sign, Referring to Analytical 

Solution, Bounds Contain Solution, Result Matches Analytical Solution 

Choosing Bounds 

Containing Solutions 
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Sub-Category Category 

Not Matching Analytical Solution, Result Discrepancy, Iteration Result 

vs Analytical Result, Analytical Error.  

Not Matching 

Analytical Calculation 

Containing Solution, Effective Bounds, Smaller Range More Efficient. Bounds Efficiency 

Choosing Bounds Based on Function Evaluation, Bounds Containing 

Solution, Iteration Tolerance.  

Argumentation 

Iterations Approaching 0, Range Not Too Large, Effective Iteration, 

Validating Results with Graphs, Result Consistency with Analytical 

Method.  

Iteration Effectiveness 

Adjusting Range Based on Solution, Misunderstanding Bounds, Error 

in Bound Selection, Misconception in Solution Determination, Using 

Large Range for Solution, Finding Only One Solution, Failing to 

Identify Other Solutions, Misunderstanding Instructions, Error in 

Solution Identification, Misconception in Bound Range.  

Misconception 

Converting Units from Liters to cm³, Ensuring Unit Consistency.  Unit Conversion 

Formulating Equations Based on Volume and Dimensions, Checking 

Equation Consistency, Simplifying Equations or Reducing Them to 0,  

Formulating Equations 

Identifying Equations as Non-Linear Functions with Exponents Greater 

than 1. 

Understanding Non-

Linear Equations 

 

The open coding process for high-SRL students, as shown in Table 2, categorizes 

data into sub-categories and broader categories related to solving non-linear equations and 

the bisection algorithm. Sub-categories like "Formula of quadratic solution" and "Function 

Factorization" are grouped under categories such as Remembering the Quadratic Function 

Root Formula and Remembering Function Factorization. On the other hand, errors and 

misconceptions, as seen in "Table Method" and "Not Matching Analytical Solution," are 

categorized under Misconception of Analytical Calculation. Other sub-categories related to 

the bisection iteration process, such as "Determining New Bounds" and "Stopping After the 

4th Iteration," are classified into categories like Determining Bounds and Stopping 

Iterations. Thus, open coding organizes the data into meaningful categories based on 

emerging patterns, facilitating axial coding. 
 

Open Coding for Medium group of SRL 

In the group of medium-level SRL students, interview convergence was obtained 

from 5 respondents, resulting in 102 codes, 29 sub-categories, and 8 categories that describe 

six mathematical reasoning abilities (see Table 3). 

Table 3. Sub-categories and categories to define reasoning abilities in medium SRL 

Sub-Category Category 

Analytical method, Quadratic function, Quadratic formula in obtaining 

the roots of a quadratic function, Difficulty in determining the values x1 

+ x2 = -3 and x1 * x2 = -5, Quadratic formula x = (-b ± √(b² - 4ac)) / 

2a, Simplified value, True solution, Irrational number 

Remembering the 

Quadratic Function 

Root Formula 

a = Xa b = Xb Xc = (Xa + Xb) / 2, The interval contains the solution if 

f(a) * f(b) < 0, c = (a + b) / 2, If f(a) * f(c) < 0 then b = c otherwise a = 

c, 

Determining Bounds 
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Sub-Category Category 

Determining the initial bounds, Determining the midpoint of the 

interval, Selecting a new bound, Iteration table, Adjusting to analytical 

calculations, If Abs(f(c)) < e then the solution = c 

Applying the 

Algorithm 

Obtaining the midpoint, Approximating the true solution, Testing the 

bounds, The function value approaches 0, Satisfies the tolerance, 

Function value < Tolerance 

Determining the 

Solution 

The bound refers to the answer, Determining the bound referring to the 

analytical solution, The interval contains the solution, 

Consistency with 

Analytical Results 

Contains the solution, The function value of the bound is negative or 

positive, Testing the bound, Argument for selecting the interval, 

Determining the effective bound 

Arguing 

Error in testing the bound, Evaluating the accuracy of the bound, 

Testing the bound with a sketch 

Misconception 

Misunderstanding the problem Misunderstanding 

 

The open coding process, shown in Table 3, identified several categories and sub-

categories related to solving non-linear equations and the bisection algorithm from medium-

SRL students. Under Remembering the Quadratic Function Root Formula, sub-categories 

include the analytical method, the quadratic formula, and common difficulties in determining 

specific values. The Determining Bounds category encompasses concepts such as 

establishing initial bounds and conditions for the interval to contain solutions. The Applying 

the Algorithm category details steps like selecting new bounds and creating iteration tables. 

Within Determining the Solution, key aspects include obtaining midpoints and ensuring 

function values approach zero within tolerance limits. The Consistency with Analytical 

Results category emphasizes the importance of verifying that bounds refer to analytical 

solutions. The Arguing category involves justifying the selection of intervals based on 

function values. Additionally, misconceptions and misunderstandings, categorized under 

Misconception and Misunderstanding, highlight common errors in testing bounds and 

interpreting problems. 
 

Open Coding for Low group of SRL 

Open coding in a low-level student group, interview convergence was obtained from 

5 respondents, resulting in 83 codes, 33 sub-categories, and 6 categories that describe six 

mathematical reasoning abilities (see Table 4). 

Table 4. Sub-categories and categories to define reasoning abilities in low SRL 

Sub-Category Category 

Quadratic Function Root Formula, Remembering the Use of the ABC 

Formula, Difficulty in Factorization, Factorization Failure 

Remembering the 

Quadratic Function 

Root Formula 

Initial Range Selection, Range Division, Boundary Testing, 

determining a new range, Determining Bounds Containing Solutions, 

Function Value of Bounds, Negative or Positive, Midpoint = (a+b)/2 

Iteration Steps 

Solution Approaching Zero, Solution Argumentation, Adjustment 

Based on Reference Adjustment of Stopping Criteria 

Stopping Iterations 
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Sub-Category Category 

Boundary Selection, Proof that Bounds Contain Solution, Choosing 

Optimal Bounds 

Rationalizing Initial Bounds, Determining Effective Bounds, 

Boundary Testing 

Argumentation 

Errors in Understanding the Question, using analytical answers as 

reference, failure to choose bounds containing other solutions 

Misconception 

Errors in Formulating Mathematical Equations, Rectangular Prism 

Volume Formula, Surface Area Without Lid 

Misunderstanding 

 

Table 4 shows the open coding process from low-SRL student, identified several 

categories and sub-categories related to solving quadratic equations and addressing 

misconceptions. Under Remembering the Quadratic Function Root Formula, key sub-

categories include the Quadratic Function Root Formula, challenges in factorization, and the 

Difficulty in Factorization. The Iteration Steps category includes elements such as Initial 

Range Selection, Range Division, and Boundary Testing, as well as determining new ranges 

based on the function value of bounds. Within the Stopping Iterations category, concepts 

like Solution Approaching Zero and adjustments based on reference criteria are highlighted. 

The Boundary Selection sub-category emphasizes proof that bounds contain a solution while 

choosing optimal bounds for accuracy. The Argumentation category focuses on rationalizing 

initial bounds and ensuring their effectiveness through boundary testing. Finally, 

misconceptions and misunderstandings, categorized under Misconception and 

Misunderstanding, involve errors in interpreting questions and formulating mathematical 

equations, such as the Rectangular Prism Volume Formula. 
 

3.1.2. Axial Coding 

In the axial coding stage, each category derived from the open coding process can 

describe the central phenomenon. Categories, as causal conditions in the context of axial 

coding, refer to variables considered as causes or main factors affecting or explaining the 

phenomenon under investigation. This is illustrated in the following axial coding flowchart 

(see Figure 2). 
 

 

Figure 2.  Grounded theory research procedure 

 

In the diagram from Figure 2, the columns of categories as causal condition factors 

illustrate 1) mathematical reasoning abilities, through 2) computer-assisted discovery 
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learning, supported by the internal factor 3) level of self-regulated learning, resulting in the 

4) central phenomenon at each SRL level, which pertains to mastery of core reasoning 

abilities. 
 

3.1.3. Selective Coding 

A conceptual model illustrating key aspects of the mathematical reasoning process, 

particularly in solving non-linear equations, is shown in the following Figure 3. 
 

 

Figure 3. Selective coding 
 

Figure 3 illustrates the central phenomenon derived from the categorization and 

grouping of mathematical reasoning abilities at each level of Self-Regulated Learning 

(SRL). This framework delineates how students' mathematical reasoning evolves as they 

progress through different stages of SRL. Each category reflects specific competencies, 

including recalling formulas, selecting appropriate methods, and effectively applying 

iterative processes. 1) Memorize Reasoning: This type of reasoning relates to the ability to 

recall formulas and procedures that have been learned, 2) Algorithmic Reasoning: This 

involves the ability to apply algorithms or structured steps to solve problems, 3) Plausible 

Reasoning: This refers to the ability to determine bounds that are likely to contain solutions, 

considering the effectiveness and efficiency of iterations, 4) Novelty Reasoning: This is the 

ability to provide alternative solutions or handle new or unfamiliar problems, 5) Math 

Foundation: A strong foundation in basic mathematics is crucial for understanding more 

complex concepts (Lithner, 2008). 
 

3.1.4. Theorization 

Theorization is the stage where the researcher formulates a theory based on the 

results from open coding, axial coding, and selective coding according to the hypothesis 

derived from the literature review, this study adopts the Lithner perspective. The 

hypothetical syllogism that builds the theory is as follows: 
 

Hypothetical 1 : "If participants possess all five mathematical reasoning abilities, they are 

considered to have excellent mathematical reasoning skills." 

Hypothetical 2 : "If participants possess four mathematical reasoning abilities, they are considered 

to have good mathematical reasoning skills." 
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Hypothetical 3 : "If participants possess three mathematical reasoning abilities, they are 

considered to have fairly good mathematical reasoning skills." 

Hypothetical 4 : "If participants possess two mathematical reasoning abilities, they are considered 

to have poor mathematical reasoning skills." 

Hypothetical 5 : "If participants possess only one mathematical reasoning ability, they are 

considered to have very poor mathematical reasoning skills." 

Hypothetical 6 : "If participants do not possess any mathematical reasoning abilities, they are 

considered to have inadequate mathematical reasoning skills." 

Hypothetical 7 : "If participants possess the abilities of memorize and algorithmic mathematical 

reasoning, they are considered to have imitative reasoning skills." 

Hypothetical 8 : "If participants possess the abilities of plausible and novelty mathematical 

reasoning, they are considered to have creative reasoning skills." 

Hypothetical 9 : "If participants possess the ability of mathematical foundation reasoning, they are 

considered to have reconstructive reasoning skills." 
 

The conclusions drawn using HyperRESEARCH output, as a theory linking SRL 

levels and mathematical reasoning abilities, are as follows: 
 

 

Figure 4. Theory testing on students with a high SRL level 
 

Figure 4 presents the output of the HyperRESEARCH analysis on reasoning abilities 

at the high-SRL: Students who received DL-CA (Discovery Learning with Computer 

Assistance) and have a high level of self-regulated learning exhibit good mathematical 

reasoning abilities because they have four indicators of mathematical reasoning: memorized 

reasoning, algorithmic reasoning, mathematical foundation, and plausible reasoning. 

Students with a high level of self-regulated learning who received DL-CA demonstrate 

imitative and constructive reasoning abilities, but not creative reasoning. 
 

 

Figure 5. Theory testing on students with a medium SRL level 
 

Figure 5 presents the output of the HyperRESEARCH analysis on reasoning abilities 

at the medium-SRL: Students who received DL-CA and have a medium level of self-

regulated learning exhibit fairly good mathematical reasoning abilities because they have 

three indicators of mathematical reasoning: memorized reasoning, algorithmic reasoning, 

and plausible reasoning. Its level received DL-CA exhibit imitative reasoning abilities. 
 

 
Testing your Theory on Case: High SRL 

The following rules were found to apply to this case: 

 

 Rule 3 was applicable: 

If Memorize Reasoning AND Algorithmic Reasoning AND Plausible Reasoning AND Mathematics 

Foundation Reasoning THEN GOAL REACHED Mathematical reasoning ability in the good category 

 
Testing your Theory on Case: Medium SRL 

The following rules were found to apply to this case: 

 

 Rule 4 was applicable: 

If Memorize Reasoning AND Algorithmic Reasoning AND Plausible Reasoning THEN GOAL REACHED 

Mathematical reasoning ability in the fairly good category 
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Figure 6. Theory testing on students with a low SRL level 
 

Figure 6 presents the output of the HyperRESEARCH analysis on reasoning abilities 

at the low-SRL: Students who received DL-CA and have a low level of self-regulated 

learning exhibit fairly good mathematical reasoning abilities because they have three 

indicators of mathematical reasoning: memorized reasoning, algorithmic reasoning, and 

plausible reasoning. Its level received DL-CA exhibit imitative reasoning abilities. 
 

3.1.5. Verification and Validation 

The research findings are validated through assessments of credibility, 

confirmability, transferability, and dependability of the results (Creswell, 2014). A member 

check was conducted with 33 participants, which involves comparing the data obtained by 

the researcher (etic) with that provided by the data sources (emic) (Cohen et al., 2002; 

Krefting, 1991). After completing the data analysis, an overview of students' mathematical 

reasoning abilities influenced by learning and assessed from the perspective of self-regulated 

learning (SRL) levels was obtained. The researcher then returned to the participants to 

validate the findings. One example of the validation results is the difference in the depiction 

of mathematics foundation reasoning abilities across the three levels of SRL: 1) Research 

findings (Etic): Students with high SRL levels exhibit mathematics foundation reasoning 

abilities, while students with medium and low SRL levels are unable to demonstrate 

mathematics foundation reasoning abilities, 2) Data providers (Emic). 

Table 5. Student answers across different levels of SRL 

Aspect High SRL Level Low/Medium SRL Level 

Writen 

Answer 

 

 
Testing your Theory on Case: Low SRL 

The following rules were found to apply to this case: 

 

 Rule 4 was applicable: 

If Memorize Reasoning AND Algorithmic Reasoning AND Plausible Reasoning THEN GOAL REACHED 

Mathematical reasoning ability in the fairly good category 
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Aspect High SRL Level Low/Medium SRL Level 

Interview 

Answer 

P: Do you understand what needs to be done 

for question?  

T1: Formulate a nonlinear equation based on 

the given information in the problem. 

P: Explain how you arrived at that answer. 

T1: The swimming pool is rectangular, with 

the volume formula being length×height× 

width. The volume is given as 14.04L, the 

length = t + 80 cm, width = t + 40 cm, and 

height = t cm. Thus, the equation becomes 

14.04 = (t + 80)(t + 40)(t). 

P: Is the equation complete or correct? 

T1: Not yet, sir. You can see that the units are 

not the same. When solving problems 

involving solid figures like this, the units 

must first be converted. I converted the 

units to cm, so 14.04 L = 14.04 dm³ = 

14,040 cm³, which changes the equation to 

14,040 = (t + 80)(t + 40)(t). 

P: Is the equation now complete for use? 

T1: It still needs to be adjusted by expanding it 

and turning it into a zero-value equation: 

(t)(t² + 120t + 3200) = 14,040 t³ + 120t² + 

3200t = 14,040 t³ + 120t² + 3200t - 14,040 

= 0 

P: Do you think it's necessary to change (t)(t + 

80)(t + 40)? 

T1: It seems necessary, sir, to simplify the 

calculation for each value of x. 

P: Actually, it would be easier if you left it 

unchanged. Is this a nonlinear equation? 

T1: Yes, sir. It appears that when multiplied 

out, it forms a cubic function. 

P: Do you understand what needs to be 

done for question? 

S1: Formulate a nonlinear equation based 

on the basic formula for the volume of 

a rectangular prism, which is volume = 

length × width × height. 

P: Explain how you arrived at that answer. 

S1: We know that the swimming pool is 

shaped like a rectangular prism, so the 

formula for the volume is volume = 

length × width × height. The volume is 

given as 14.04 liters, with length = t + 

80 cm, width = t + 40 cm, and height = 

t cm. Thus, the equation is 14.04 = (t + 

80)(t + 40)(t). 

P: Did you not consider the units? 

S1: No, I didn’t, sir. I didn’t pay attention 

to the different units and should have 

converted them first. 

P: So, what do you mean by t1 and t2? 

S1: I calculated the values of the variable t 

using an analytical method, but since 

the volume value was not converted 

into cm³, I didn’t account for that in the 

calculation. 

 

Analysis T1 explains the process of formulating a 

nonlinear equation based on the problem data. 

They started by using the volume formula for a 

rectangular prism and converting the volume 

unit from liters to cubic centimeters to obtain 

the correct equation. Although the initial 

equation was 14.04 = (t + 80)(t + 40)(t), T1 

recognized the need to convert the units and 

simplified the equation to 14,040 = (t + 80)(t + 

40)(t). To facilitate calculations, T1 then 

transformed the equation into the polynomial 

form t3 + 120t2 + 3200t – 14.040 = 0. T1 

ultimately confirmed that this equation is a 

cubic function, indicating that it is nonlinear. 

Common errors include a lack of attention 

to units and insufficient understanding of 

basic mathematical concepts in the context 

of solid geometry. Students S1 and S2, who 

were used to identify reasoning abilities in 

mathematical foundations, showed 

similarities in formulating mathematical 

equations correctly but failed to consider the 

consistency of the units for the dimensions 

of the pool. 

 

The analysis of responses (see Table 5), reveals clear differences in reasoning 

abilities between students with high and low/medium Self-Regulated Learning (SRL) levels. 

The interview responses highlighted as keywords in the open coding process and used to 

determine categories. Students at the high SRL level (T1) demonstrate a comprehensive 

understanding of problem-solving, accurately formulating a nonlinear equation and 
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recognizing the critical importance of unit consistency. T1 effectively converts volume units 

and transforms equations into polynomial form, showcasing their strong grasp of 

mathematical concepts. In contrast, students at the low/medium SRL level (S1) exhibit a 

basic understanding of the volume formula but fail to pay attention to unit conversions, 

which leads to errors in their calculations. While S1 arrives at a similar equation, their lack 

of attention to unit consistency indicates gaps in their reasoning skills. Overall, high SRL 

students show a methodical approach to problem-solving and a deeper understanding of 

mathematical principles, whereas low to medium SRL students struggle with fundamental 

concepts and details. The results presented in Figures 3 and 4 further illustrate the disparities 

in mathematical reasoning abilities among students, aligning with the feedback gathered 

during the member check process for those at both high and medium SRL levels. 

Contextual completeness refers to the researcher's use of literature studies to 

maintain contextual completeness through various references (books, journals, and scientific 

articles) to strengthen the validity of the information produced. The reference sources related 

to learning theories, discovery learning methods, and theories on self-regulated learning, 

align with several research findings as follows (see Table 6). 

Table 6. Literatur to strengthen the validity of the information produced 

No Citation Title Conclusion 

1 Rahayuningsih et al. 

(2021) 

The effect of self-

regulated learning 

on students’ 

problem-solving 

abilities. 

Students with high self-regulation 

and high problem-solving ability tend 

to demonstrate strong literacy skills, 

high metacognitive awareness, and 

proactive yet inflexible cognitive 

processes. 

2 Öztürk and Sarikaya 

(2021)  

The relationship 

between the 

mathematical 

reasoning skills and 

video game 

addiction of 

Turkish middle 

schools students: A 

serial mediator 

model. 

Students with higher self-regulation 

skills are better able to manage the 

negative effects of video game 

addiction, which supports their 

reasoning abilities. Conversely, 

lower self-regulation skills can 

exacerbate the negative impact of 

video game addiction on reasoning. 

3 Maulida et al. (2024a) Differences in the 

influence of self-

regulated learning 

levels on enhancing 

students’ 

mathematical 

reasoning abilities. 

The level of self-regulated learning 

significantly influences the 

enhancement of students' 

mathematical reasoning abilities. 

Variations in the level of self-

regulated learning lead to differences 

in the improvement of these abilities. 

 

Table 6 compares the findings from the current analysis with previous research, 

highlighting the positive impact of Self-Regulated Learning (SRL) on mathematical 

reasoning abilities. For instance, Rahayuningsih et al. (2021) established that students with 

high SRL skills tend to demonstrate strong literacy, high metacognitive awareness, and 

effective cognitive processes, which are related to better problem-solving abilities. Similarly, 
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Öztürk and Sarikaya (2021) found that higher SRL skills help students manage the negative 

effects of video game addiction, supporting their reasoning abilities. Moreover, Maulida et 

al. (2024a) showed that the level of SRL significantly influences the enhancement of 

students' mathematical reasoning abilities, with variations in SRL levels leading to 

differences in these abilities. These studies collectively support the conclusion that 

developing SRL competencies can facilitate better mathematical understanding and 

reasoning, consistent with the disparities observed in reasoning abilities between high and 

low/medium SRL level students in the current research. 

Dependability in this research is demonstrated through an external audit conducted 

by a validator who inspects all activities performed by the researcher, including themes, 

categories, sub-categories, and the hypothetical or substantive theories generated. 

Confirmability is shown by examining all findings related to themes, categories, sub-

categories, and hypothetical conclusions obtained by the researcher by other experts beyond 

the validators and researchers. The validity of the findings and the results of the data analysis 

were verified by two independent mathematics education experts who reviewed the 

mathematical reasoning assessment instruments and self-regulated learning questionnaires, 

as well as other supporting documents. 

Transferability refers to the effort to generalize the findings of this study and apply 

them to other situations and contexts. The researcher acknowledges that it cannot be 

definitively claimed that the findings are fully applicable to other contexts due to the research 

limitations related to the sample of mathematics education students from a state university 

in Langsa, using DL-CA learning for solving nonlinear equations with the bisection method. 

Nevertheless, by applying rigorous research procedures, the researcher hopes that the results 

of this study can provide valuable and relevant insights in different situations and contexts. 
 

3.2. Discussion 

Based on the research findings, a conjecture (substantive theory) was formulated 

linking the level of self-regulated learning (SRL) to mathematical reasoning abilities in DL-

CA learning. This conjecture reveals the characteristics and classifications of mathematical 

reasoning abilities at each SRL level. Specifically, students in the DL-CA learning group 

with high levels of SRL demonstrate strong mathematical reasoning abilities, characterized 

by memorized reasoning, algorithmic reasoning, mathematical foundations, and plausible 

reasoning  . Students in the DL-CA learning group with moderate and low levels of SRL 

exhibit reasonably good mathematical reasoning abilities, marked by memorized reasoning, 

algorithmic reasoning, and plausible reasoning. students exhibiting high SRL are better 

equipped to understand and apply mathematical concepts, as they actively engage in self-

monitoring and reflection  (Zimmerman & Schunk, 2013). Each aspect of reasoning at every 

SRL level differs in students' responses, reflecting their unique approaches to problem-

solving based on their SRL abilities. 

Students' responses, solving nonlinear equations using the bisection method, involve 

various aspects of mathematical reasoning, such as memorization, algorithmic reasoning, 

mathematical foundations, novelty, and plausible reasoning, which are interconnected and 

support the problem-solving process. Memorization is evident when students recall the main 
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requirements of the bisection method, such as the function f(x) being continuous and having 

opposite signs at the endpoints of the interval [a,b]. This serves as the foundation for starting 

the process. Algorithmic reasoning is applied in the systematic steps of the bisection method, 

including dividing the interval into two parts, evaluating the function at the midpoint, and 

selecting a new subinterval based on the sign of the function until the desired tolerance is 

achieved. The structured approach inherent in the bisection method not only reinforces 

mathematical foundations but also encourages students to engage in deeper reasoning 

processes, thereby enhancing their overall problem-solving skills (Rahayuningsih et al., 

2021). 

Mathematical foundations strengthen this process by providing an understanding of 

why the bisection method works, such as through the properties of continuous functions and 

the intermediate value theorem. These foundational concepts are crucial as they allow 

students to grasp the underlying principles that govern the method's effectiveness (Navarro-

López & Licéaga-Castro, 2010). In some student responses, novelty emerges when they 

attempt to modify the approach, for instance, by adjusting the tolerance level or iteration 

strategies to improve efficiency. Plausible reasoning complements the process by ensuring 

that the solution at each iteration remains within the valid interval and meets the error 

criteria. By integrating these aspects, students demonstrate a deep understanding of the 

bisection method and effectively solve nonlinear equations in a systematic and logical 

manner showcasing their ability to apply self-regulated learning strategies that enhance their 

academic performance (Dai et al., 2022). 

Overall, at a group of students with a high level of SRL, the students' responses reveal 

a comprehensive structure in explaining mathematical techniques and algorithms through 

various in-depth and detailed categories. This includes not only basic formulas such as the 

quadratic root formula and factorization methods but also advanced techniques in bisection 

algorithms, including step-by-step procedures, iteration processes, and boundary evaluations 

(Jordan et al., 1999). Students with a high level of Self-Regulated Learning (SRL) 

demonstrate a comprehensive and methodical approach to mathematical problem-solving. 

They can explain basic concepts, such as the quadratic root formula and factorization 

methods, as well as more advanced techniques like the bisection algorithm. The bisection 

method, in particular, is noted for its robustness and simplicity, making it a preferred choice 

for solving nonlinear equations due to its guaranteed convergence properties (Dumas et al., 

2015). Furthermore, students' ability to adapt and modify their approaches, such as adjusting 

tolerance levels in the bisection method, reflects a deeper understanding of mathematical 

principles and their applications.  

Students with a low level of Self-Regulated Learning (SRL) tend to exhibit 

fragmented and less structured reasoning in mathematics. They often rely heavily on rote 

memorization without fully understanding the underlying concepts, which limits their ability 

to construct logical arguments or apply reasoning to new or complex situations. For instance, 

they may struggle to explain the rationale behind basic formulas, such as the quadratic root 

formula or factorization methods, and are unlikely to engage effectively with advanced 

reasoning processes like those required in the bisection algorithm. Their lack of strategic 

planning, reflection, and self-monitoring results in superficial reasoning that hampers their 
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ability to develop deeper mathematical insights. The widespread attitude toward rote 

learning constitutes a significant obstacle, as many students expect to memorize and 

reproduce material passively, which stifles their engagement with the subject matter (Jordan 

et al., 1999). Furthermore, research indicates that students' dislike of mathematics often 

stems from ineffective instructional methods that fail to foster a deeper understanding of 

concepts, leading to a reliance on memorization rather than meaningful learning (Ukobizaba 

et al., 2021). This reliance on rote learning not only limits their mathematical reasoning but 

also inhibits their ability to adapt their knowledge to solve novel problems, as they lack the 

necessary conceptual framework to do so (Kollosche, 2021). 

In contrast, students with a higher or lower level of SRL show significant limitations 

in their reasoning abilities. The difference is shown clearly in constructing mathematical 

models for real-world situations, such as calculating the surface area of a swimming pool. 

Students with high SRL approach this problem in a structured and comprehensive manner. 

They can identify key variables, such as length, width, depth, and additional features of the 

pool, and develop mathematical equations that accurately represent the real-world scenario, 

including combining formulas for flat and curved surfaces when necessary. Students with 

high self-regulated learning exhibit a strong understanding of the material, which enhances 

their ability to apply cognitive skills effectively in problem-solving situations (Miatun & 

Muntazhimah, 2018). Moreover, self-regulated learning has been shown to significantly 

impact learning outcomes, with studies revealing that students who engage in self-regulation 

strategies are more likely to achieve higher academic performance (Siregar et al., 2021). This 

ability to self-regulate not only fosters a deeper comprehension of mathematical concepts 

but also equips students with the skills necessary to adapt their knowledge to various 

contexts, thereby improving their overall problem-solving capabilities (Dai et al., 2022). 

Some may be able to create basic equations, but these are often based on memorized 

reasoning—recalling formulas and steps from memory without fully understanding their 

application to the real-world context. Others frequently overlook crucial details, such as 

converting measurement units, leading to inaccuracies in their models. This reliance on 

memorized reasoning results in incomplete or incorrect models because they are not rooted 

in a deeper understanding of the mathematical principles. Additionally, their lack of 

reflective practices means that errors go unnoticed until the final stages. This contrast 

highlights that students with high SRL not only excel in constructing appropriate 

mathematical models by combining memorization with a foundational understanding but 

also ensure these models thoroughly reflect real-world conditions. In comparison, students 

with low SRL are more prone to errors due to their reliance on memorization without a solid 

conceptual foundation and the lack of strategy or evaluation in their reasoning process. the 

ability to engage in metacognitive reflection is crucial for identifying errors and refining 

reasoning processes, which ultimately enhances students' mathematical reasoning skills 

(Pape et al., 2002; Zimmerman, 2002; Zimmerman & Schunk, 2013). 

The difference in reasoning ability in the aspects of algorithmic reasoning and 

plausible reasoning is also clearly evident between students with high and low levels of Self-

Regulated Learning (SRL), especially in constructing iteration steps. Students with high SRL 

tend to build iteration steps systematically and structured, whether by using tables or careful 
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per-iteration calculations. They pay close attention to each step, starting with determining 

boundaries using appropriate function value indicators for testing, and then proceeding to 

the next iteration while considering accurate results. In this process, they are also able to 

consider plausible outcomes based on their deep understanding of the concepts being 

applied. Students who engage in algorithmic reasoning are more adept at applying systematic 

approaches to problem-solving, which enhances their ability to construct accurate 

mathematical models (Zimmerman, 2002). Furthermore, the development of plausible 

reasoning skills allows students to evaluate potential outcomes critically, leading to more 

effective decision-making in mathematical contexts (Palengka et al., 2022). 

Students' responses also highlight misconceptions and common errors that may arise 

during calculations and iterations, along with strategies for addressing these issues (Ancheta, 

2022). In contrast, students with low SRL often determine boundaries arbitrarily or by 

guessing, without testing or verifying the values properly, leading to calculation errors at the 

end of the process. Although both groups may apply the same method, students with low 

SRL tend to fail to pay attention to crucial details that can affect the final result, causing 

errors even though the steps taken theoretically might be correct. Efficiency and 

effectiveness of iterations are also considered, demonstrating how results can be validated 

with graphs and consistency of analytical methods (Ladecký et al., 2019). Through 

subcategories such as unit conversions and equation formulation, a deep understanding of 

how to apply basic mathematical concepts in a broader context is demonstrated (Carnevale 

& Ahlfeld, 2019). 

The theory found from this research regarding the relationship between mathematical 

reasoning and SRL has limitations in several aspects, such as the limited sample size, which 

only involved students from one university, and the focus on face-to-face learning, which 

may differ from online or hybrid learning. These limitations imply that future research 

should expand the sample by involving students from different universities or cities to obtain 

a more representative picture. Furthermore, future studies should consider the 

implementation of a hybrid learning model to examine its impact on mathematical reasoning 

abilities. Variations in learning settings, both online and face-to-face, should also be 

explored to assess their influence on students' self-regulated learning levels. The scope of 

the learning materials to test the effectiveness of this learning model on other mathematical 

topics. A more comprehensive measurement of other cognitive aspects, such as problem-

solving abilities or creativity, would provide a more complete understanding. Affective 

factors, such as motivation and self-efficacy, should also be investigated to understand their 

impact on students' mathematical reasoning abilities. This study was also limited in its ability 

to explore the novelty reasoning aspect due to constraints in the instruments used to measure 

students' creative or innovative thinking. Additionally, the influence of affective factors on 

self-regulated learning should be further explored. 
 

4. CONCLUSION 

The research findings indicate that the relationship between mathematical reasoning 

and students' levels of Self-Regulated Learning (SRL) is closely intertwined, as described in 

Lithner's perspective. Students with high SRL levels demonstrate stronger and more 
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structured mathematical reasoning abilities. They can effectively connect various aspects of 

mathematical reasoning, such as memorization, algorithmic reasoning, mathematical 

foundations, plausible reasoning, and novelty reasoning, in the problem-solving process. 

This aligns with Lithner’s theory, which emphasizes the importance of reflection and self-

regulation in the learning process to develop a deep understanding and accurate application 

of concepts. With high SRL, students are able to build a better conceptual understanding and 

avoid errors caused by reliance on memorization or algorithmic procedures that are not fully 

understood. 

In contrast, students with low SRL levels tend to exhibit fragmented mathematical 

reasoning and rely heavily on memorization without a deep understanding of the underlying 

concepts. They often struggle to link algorithmic reasoning with more complex 

mathematical theory. This limits their ability to solve problems effectively, especially in 

tasks that require innovation or novel reasoning. From Lithner’s perspective, the lack of self-

regulation leads to an inability to reflect on and critically assess solutions, which in turn 

hinders the development of their mathematical reasoning abilities. Therefore, it is crucial for 

mathematics education to focus on developing better SRL skills in students to enable them 

to fully utilize their potential in mathematical reasoning. 
 

Acknowledgments 

The authors would like to express our deepest gratitude to the Indonesia Endowment 

Fund for Education (LPDP), Ministry of Finance of the Republic of Indonesia, for the 

sponsorship of this study. Also, thanks to the academic communities at Universitas 

Pendidikan Indonesia and Universitas Samudra. With all the support, the authors might 

accomplish this article as expected. 
 

Declarations 

Author Contribution : GMAS: Conceptualization, Writing - original, Writing - review 

& editing, and Visualization; W: Formal analysis, Methodology, 

Supervision, Validation, and Writing - review & editing; TH: 

Supervision, and Validation. 

Funding Statement : This research was funded by the Indonesia Endowment Fund for 

Education (LPDP), Ministry of Finance of the Republic of 

Indonesia, for the sponsorship of this study. 

Conflict of Interest : The authors declare no conflict of interest. 

Additional Information : Additional information is available for this paper. 
 

REFERENCES 

Aisyah, N., Susanti, E., Meryansumayeka, M., Siswono, T. Y. E., & Maat, S. M. (2023). 

Proving geometry theorems: Student prospective teachers’ perseverance and 

mathematical reasoning. Infinity Journal, 12(2), 377-392. 

https://doi.org/10.22460/infinity.v12i2.p377-392  

https://doi.org/10.22460/infinity.v12i2.p377-392


 Volume 14, No 1, 2025, pp. 259-282

 

 

279 Infinity

Anazifa, R. D., & Djukri, D. (2017). Project- based learning and problem- based learning: 

Are they effective to improve student’s thinking skills? Jurnal Pendidikan IPA 

Indonesia, 6(2), 346-355. https://doi.org/10.15294/jpii.v6i2.11100  

Ancheta, C. M. D. (2022). An error analysis of students’ misconceptions and skill deficits in 

pre-calculus subjects. Journal for Educators, Teachers and Trainers, 13(5), 283-295. 

https://doi.org/10.47750/jett.2022.13.05.026  

Angraini, L. M., Larsari, V. N., Muhammad, I., & Kania, N. (2023). Generalizations and 

analogical reasoning of junior high school viewed from Bruner's learning theory. 

Infinity Journal, 12(2), 291-306. https://doi.org/10.22460/infinity.v12i2.p291-306  

Azmi, K. R., & Arfianti, K. (2021). Self regulated learning (SRL): Skills in improving 

learning motivation. KONSELI : Jurnal Bimbingan dan Konseling, 8(2), 199-206. 

https://doi.org/10.24042/kons.v8i2.9958  

Carnevale, M., & Ahlfeld, R. (2019). Mathematical formulation. In F. Montomoli (Ed.), 

Uncertainty quantification in computational fluid dynamics and aircraft engines (pp. 

67-155). Springer International Publishing. https://doi.org/10.1007/978-3-319-

92943-9_3  

Charmaz, K. (2014). Grounded theory in global perspective: Reviews by international 

researchers. Qualitative Inquiry, 20(9), 1074-1084. 

https://doi.org/10.1177/1077800414545235  

Clark, R. C., & Mayer, R. E. (2016). E‐learning and the science of instruction: Proven 

guidelines for consumers and designers of multimedia learning. John Wiley & Sons. 

https://doi.org/10.1002/9781119239086  

Cohen, L., Manion, L., & Morrison, K. (2002). Research methods in education. Routledge. 

https://doi.org/10.4324/9780203224342  

Corazza, G. R., Lenti, M. V., & Howdle, P. D. (2021). Diagnostic reasoning in internal 

medicine: a practical reappraisal. Internal and emergency medicine, 16(2), 273-279. 

https://doi.org/10.1007/s11739-020-02580-0  

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods 

approaches (4th ed.). Sage.  

Dai, W., Li, Z., & Jia, N. (2022). Self-regulated learning, online mathematics learning 

engagement, and perceived academic control among Chinese junior high school 

students during the COVID-19 pandemic: A latent profile analysis and mediation 

analysis. Frontiers in psychology, 13. https://doi.org/10.3389/fpsyg.2022.1042843  

Delima, N., Kusuma, D. A., & Paulus, E. (2024). The students' mathematics self-regulated 

learning and mathematics anxiety based on the use of chat GPT, music, study 

program, and academic achievement. Infinity Journal, 13(2), 349-362. 

https://doi.org/10.22460/infinity.v13i2.p349-362  

Desti, R. M., Pertiwi, C. M., Sumarmo, U., & Hidayat, W. (2020). Improving student’s 

mathematical creative thinking and habits of mind using a problem-solving approach 

based on cognitive thinking stage. Journal of Physics: Conference Series, 1657(1), 

012042. https://doi.org/10.1088/1742-6596/1657/1/012042  

Dumas, A., Dantan, J.-Y., Gayton, N., Bles, T., & Loebl, R. (2015). An iterative statistical 

tolerance analysis procedure to deal with linearized behavior models. Journal of 

https://doi.org/10.15294/jpii.v6i2.11100
https://doi.org/10.47750/jett.2022.13.05.026
https://doi.org/10.22460/infinity.v12i2.p291-306
https://doi.org/10.24042/kons.v8i2.9958
https://doi.org/10.1007/978-3-319-92943-9_3
https://doi.org/10.1007/978-3-319-92943-9_3
https://doi.org/10.1177/1077800414545235
https://doi.org/10.1002/9781119239086
https://doi.org/10.4324/9780203224342
https://doi.org/10.1007/s11739-020-02580-0
https://doi.org/10.3389/fpsyg.2022.1042843
https://doi.org/10.22460/infinity.v13i2.p349-362
https://doi.org/10.1088/1742-6596/1657/1/012042


 Siregar, Wahyudin, & Herman, Case study in a grounded theory perspective: Students' …  280 

Zhejiang University-SCIENCE A, 16(5), 353-360. 

https://doi.org/10.1631/jzus.A1400221  

Gibson, I. W. (2001). At the intersection of technology and pedagogy: considering styles of 

learning and teaching. Journal of Information Technology for Teacher Education, 

10(1-2), 37-61. https://doi.org/10.1080/14759390100200102  

Glaser, B., & Strauss, A. (2017). The discovery of grounded theory: Strategies for qualitative 

research. Routledge. https://doi.org/10.4324/9780203793206  

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 

77(1), 81-112. https://doi.org/10.3102/003465430298487  

Hidayat, W., Rohaeti, E. E., Ginanjar, A., & Putri, R. I. I. (2022). An ePub learning module 

and students' mathematical reasoning ability: A development study. Journal on 

Mathematics Education, 13(1), 103-118. https://doi.org/10.22342/jme.v13i1.pp103-

118  

Hidayat, W., Wahyudin, W., & Prabawanto, S. (2018). Improving students’ creative 

mathematical reasoning ability students through adversity quotient and argument 

driven inquiry learning. Journal of Physics: Conference Series, 948(1), 012005. 

https://doi.org/10.1088/1742-6596/948/1/012005  

Hwang, Y., & Oh, J. (2021). The relationship between self-directed learning and problem-

solving ability: The mediating role of academic self-efficacy and self-regulated 

learning among nursing students. International Journal of Environmental Research 

and Public Health, 18(4), 1738. https://doi.org/10.3390/ijerph18041738  

Jordan, D. W., Smith, P., & Spector, D. (1999). Mathematical techniques: An introduction 

for the engineering, physical, and mathematical sciences, 2nd ed. American Journal 

of Physics, 67(2), 165-169. https://doi.org/10.1119/1.19219  

Kollosche, D. (2021). Styles of reasoning for mathematics education. Educational Studies 

in Mathematics, 107(3), 471-486. https://doi.org/10.1007/s10649-021-10046-z  

Krefting, L. (1991). Rigor in qualitative research: The assessment of trustworthiness. The 

American journal of occupational therapy, 45(3), 214-222. 

https://doi.org/10.5014/ajot.45.3.214  

Ladecký, M., Pultarová, I., Zeman, J., & Vondřejc, J. (2019). Reference material 

preconditioning for FFT-based solvers. PAMM, 19(1), e201900283. 

https://doi.org/10.1002/pamm.201900283  

Lee, J., Lee, Y., Gong, S., Bae, J., & Choi, M. (2016). A meta-analysis of the effects of non-

traditional teaching methods on the critical thinking abilities of nursing students. 

BMC Medical Education, 16(1), 240. https://doi.org/10.1186/s12909-016-0761-7  

Lithner, J. (2008). A research framework for creative and imitative reasoning. Educational 

Studies in Mathematics, 67(3), 255-276. https://doi.org/10.1007/s10649-007-9104-2  

Lukman, L., Wahyudin, W., Suryadi, D., Dasari, D., & Prabawanto, S. (2022). Studying 

student statistical literacy in statistics lectures on higher education using grounded 

theory approach. Infinity Journal, 11(1), 163-176. 

https://doi.org/10.22460/infinity.v11i1.p163-176  

Maulida, A. S., Wahyudin, W., Turmudi, T., & Nurlaelah, E. (2024a). Differences in the 

influence of self-regulated learning levels on enhancing students’ mathematical 

https://doi.org/10.1631/jzus.A1400221
https://doi.org/10.1080/14759390100200102
https://doi.org/10.4324/9780203793206
https://doi.org/10.3102/003465430298487
https://doi.org/10.22342/jme.v13i1.pp103-118
https://doi.org/10.22342/jme.v13i1.pp103-118
https://doi.org/10.1088/1742-6596/948/1/012005
https://doi.org/10.3390/ijerph18041738
https://doi.org/10.1119/1.19219
https://doi.org/10.1007/s10649-021-10046-z
https://doi.org/10.5014/ajot.45.3.214
https://doi.org/10.1002/pamm.201900283
https://doi.org/10.1186/s12909-016-0761-7
https://doi.org/10.1007/s10649-007-9104-2
https://doi.org/10.22460/infinity.v11i1.p163-176


 Volume 14, No 1, 2025, pp. 259-282

 

 

281 Infinity

reasoning abilities. DWIJA CENDEKIA: Jurnal Riset Pedagogik, 8(2), 221-231. 

https://doi.org/10.20961/jdc.v8i2.89291  

Maulida, A. S., Wahyudin, W., Turmudi, T., & Nurlaelah, E. (2024b). The effect of 

experiential learning and directed instructions assisted by augmented reality on 

students' self-regulated learning. Infinity Journal, 13(2), 553-568. 

https://doi.org/10.22460/infinity.v13i2.p553-568  

Miatun, A., & Muntazhimah, M. (2018). The effect of discovery learning and problem-based 

learning on middle school students’ self-regulated learning. Journal of Physics: 

Conference Series, 948(1), 012021. https://doi.org/10.1088/1742-

6596/948/1/012021  

Navarro-López, E. M., & Licéaga-Castro, E. (2010). Combining passivity and classical 

frequency-domain methods: An insight into decentralised control. Applied 

Mathematics and Computation, 215(12), 4426-4438. 

https://doi.org/10.1016/j.amc.2010.01.012  

Nuraziza, N. E., Susanto, S., Suwito, A., Trapsilasiwi, D., & Ambarwati, R. (2022). Analysis 

of student’s mathematical reasoning in terms of learning independence during 

distance learning. Journal of Education and Learning Mathematics Research 

(JELMaR), 3(1), 22-32.  

Öztürk, M., & Sarikaya, İ. (2021). The relationship between the mathematical reasoning 

skills and video game addiction of Turkish middle schools students: A serial 

mediator model. Thinking Skills and Creativity, 40, 100843. 

https://doi.org/10.1016/j.tsc.2021.100843  

Palengka, I., Juniati, D., & Abadi, A. (2022). Mathematical reasoning of prospective 

mathematics teachers in solving problems based on working memory capacity 

differences. Eurasia Journal of Mathematics, Science and Technology Education, 

18(12), em2193. https://doi.org/10.29333/ejmste/12670  

Palinussa, A. L., Molle, J. S., & Gaspersz, M. (2021). Realistic mathematics education: 

Mathematical reasoning and communication skills in rural contexts. International 

Journal of Evaluation and Research in Education, 10(2), 522-534. 

https://doi.org/10.11591/ijere.v10i2.20640  

Pape, S. J., Zimmerman, B. J., & Pajares, F. (2002). This Issue. Theory Into Practice, 41(2), 

62-63. https://doi.org/10.1207/s15430421tip4102_1  

Pertiwi, C. M., Rohaeti, E. E., & Hidayat, W. (2021). The students' mathematical problem-

solving abilities, self-regulated learning, and VBA Microsoft Word in new normal: 

A development of teaching materials. Infinity Journal, 10(1), 17-30. 

https://doi.org/10.22460/infinity.v10i1.p17-30  

Rahayuningsih, S., Hasbi, M., Mulyati, M., & Nurhusain, M. (2021). The effect of self-

regulated learning on students’ problem-solving abilities. AKSIOMA: Jurnal 

Program Studi Pendidikan Matematika, 10(2), 927-939. 

https://doi.org/10.24127/ajpm.v10i2.3538  

Rohaeti, E. E., Nurjaman, A., Sari, I. P., Bernard, M., & Hidayat, W. (2019). Developing 

didactic design in triangle and rectangular toward students mathematical creative 

thinking through Visual Basic for PowerPoint. Journal of Physics: Conference 

Series, 1157(4), 042068. https://doi.org/10.1088/1742-6596/1157/4/042068  

https://doi.org/10.20961/jdc.v8i2.89291
https://doi.org/10.22460/infinity.v13i2.p553-568
https://doi.org/10.1088/1742-6596/948/1/012021
https://doi.org/10.1088/1742-6596/948/1/012021
https://doi.org/10.1016/j.amc.2010.01.012
https://doi.org/10.1016/j.tsc.2021.100843
https://doi.org/10.29333/ejmste/12670
https://doi.org/10.11591/ijere.v10i2.20640
https://doi.org/10.1207/s15430421tip4102_1
https://doi.org/10.22460/infinity.v10i1.p17-30
https://doi.org/10.24127/ajpm.v10i2.3538
https://doi.org/10.1088/1742-6596/1157/4/042068


 Siregar, Wahyudin, & Herman, Case study in a grounded theory perspective: Students' …  282 

Sari, V. T. A., & Hidayat, W. (2019). The students’ mathematical critical and creative 

thinking ability in double-loop problem solving learning. Journal of Physics: 

Conference Series, 1315(1), 012024. https://doi.org/10.1088/1742-

6596/1315/1/012024  

Schoenfeld, A. H. (2014). Mathematical problem solving. Academic Press.  

Siregar, H. M., Solfitri, T., & Siregar, S. N. (2021). The relationship between perceptions of 

online learning and self-regulation of mathematics education students. Jurnal 

Didaktik Matematika, 8(2), 208-221. https://doi.org/10.24815/jdm.v8i2.21882  

Sudirman, M., Fatimah, S., & Jupri, A. (2017). Improving problem solving skill and self 

regulated learning of senior high school students through scientific approach using 

quantum learning strategy. International Journal of Science and Applied Science: 

Conference Series, 2(1), 249-255.  

Sudirman, S., García-García, J., Rodríguez-Nieto, C. A., & Son, A. L. (2024). Exploring 

junior high school students' geometry self-efficacy in solving 3D geometry problems 

through 5E instructional model intervention: A grounded theory study. Infinity 

Journal, 13(1), 215-232. https://doi.org/10.22460/infinity.v13i1.p215-232  

Talib, C. A., Aliyu, F., Malik, A. M. b. A., & Siang, K. H. (2019). Enhancing students' 

reasoning skills in engineering and technology through game-based learning. 

International Journal of Emerging Technologies in Learning, 14(24), 69-80. 

https://doi.org/10.3991/ijet.v14i24.12117  

Ukobizaba, F., Ndihokubwayo, K., Mukuka, A., & Uwamahoro, J. (2021). From what makes 

students dislike mathematics towards its effective teaching practices. Bolema - 

Mathematics Education Bulletin, 35(70), 1200-1216. https://doi.org/10.1590/1980-

4415v35n70a30  

Van Gog, T., Kester, L., & Paas, F. (2011). Effects of concurrent monitoring on cognitive 

load and performance as a function of task complexity. Applied Cognitive 

Psychology, 25(4), 584-587. https://doi.org/10.1002/acp.1726  

Xiao, S., Yao, K., & Wang, T. (2019). The relationships of self-regulated learning and 

academic achievement in university students. In  Forum on Psychological Health 

Education and Counselling for School Students (PHECSS2018),  (Vol. 60, pp. 

01003). https://doi.org/10.1051/shsconf/20196001003 

Yandari, I. A. V., Nindiasari, H., Khaerunnisa, E., Pamungkas, A. S., Karso, K., & Nurjanah, 

N. (2018). Self-regulated learning in designing explorative learning tools among 

mathematics pre-service teachers through explorative module. In  Global Conference 

on Teaching, Assessment, and Learning in Education (GC-TALE 2017),  (Vol. 42, 

pp. 00106). https://doi.org/10.1051/shsconf/20184200106 

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory Into 

Practice, 41(2), 64-70. https://doi.org/10.1207/s15430421tip4102_2  

Zimmerman, B. J., & Schunk, D. H. (2013). Self-regulated learning and academic 

achievement: Theoretical perspectives. Routledge. 

https://doi.org/10.4324/9781410601032  

 

 

https://doi.org/10.1088/1742-6596/1315/1/012024
https://doi.org/10.1088/1742-6596/1315/1/012024
https://doi.org/10.24815/jdm.v8i2.21882
https://doi.org/10.22460/infinity.v13i1.p215-232
https://doi.org/10.3991/ijet.v14i24.12117
https://doi.org/10.1590/1980-4415v35n70a30
https://doi.org/10.1590/1980-4415v35n70a30
https://doi.org/10.1002/acp.1726
https://doi.org/10.1051/shsconf/20196001003
https://doi.org/10.1051/shsconf/20184200106
https://doi.org/10.1207/s15430421tip4102_2
https://doi.org/10.4324/9781410601032

