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Abstract 

Many students struggle with solving linear equations, especially in translating word problems into 

algebraic expressions. While previous studies have focused on identifying procedural errors, they 

often overlook deeper cognitive and interpretative factors that influence students' problem-solving 

capabilities. This study addresses that gap through a hermeneutic phenomenological approach to 

examine how students' perceptions and experiences shape their understanding and approach to linear 

equations. Data were collected from 37 seventh-grade students at a public junior high school in West 

Sumatra, Indonesia, through written tests and semi-structured interviews. As a qualitative 

phenomenological study, the participants were selected based on the relevance of their experiences. 

Analysis revealed that students primarily committed conceptual, procedural, and resultant errors. 

Conceptual errors stemmed from misunderstandings of mathematical concepts, procedural errors 

incorrect application of mathematical operations, and resultant errors occurred in the final solutions 

due to earlier mistakes. The findings emphasize the importance of addressing both cognitive and 

interpretative challenges in teaching linear equations. This study contributes to the existing literature 

by offering insights into factors influencing students' learning processes and highlighting teaching 

strategies that go beyond merely correcting technical errors. These findings can inform educators in 

designing more effective approaches that consider students' cognitive and interpretative needs, 

ultimately improving problem-solving skills and mathematical understanding. 
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1. INTRODUCTION 

Linear equations are a fundamental skill in algebra and a core component of the 

mathematics curriculum in secondary schools worldwide (Smith et al., 2022). They play a 

crucial role in developing problem-solving skills, cognitive abilities, and abstract reasoning, 
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which form the foundation for learning more complex mathematical concepts (del Carmen et 

al., 2024; Supianti et al., 2022). In addition, linear equations prepare students for success in 

highly demanded fields such as science, technology, engineering, and mathematics (STEM), 

which are becoming increasingly important in the modern era (Seage & Türegün, 2020). 

Despite the widespread recognition of their importance, many students face significant 

challenges in solving linear equations, particularly in translating word problems into the 

correct algebraic expressions and applying mathematical operations accurately. These 

difficulties often lead to recurring mistakes that hinder students' overall understanding of 

algebraic concepts (Jupri & Drijvers, 2016). Mathematical errors, whether conceptual or 

computational, can disrupt the learning process and limit students’ ability to grasp more 

advanced concepts, which are crucial for real-world applications (Hu et al., 2022; Putri et al., 

2024). 

Although linear equations are foundational to mathematics education, many students 

encounter persistent difficulties. Specifically, they often struggle to convert word problems 

into correct algebraic expressions (Santos, 2022; Tatira, 2023). Such errors are not limited to 

calculations but frequently reflect deeper misunderstandings of basic algebraic concepts 

(Johari & Shahrill, 2020). In this context, a more profound challenge lies in how students 

interpret and understand mathematical problems, which ultimately affects how they solve 

linear equations (Gryaznov et al., 2024). Research has identified various types of errors, 

including misapplications of mathematical operations or incorrect formulation of equations 

from word problems (Siregar et al., 2025). However, most studies focus on procedural or 

technical aspects of error analysis. This highlights the need to explore more deeply the 

cognitive and interpretative factors that influence how students approach and solve 

mathematical problems, especially in the context of linear equations (Azizah et al., 2022; 

Fardian, Suryadi, Prabawanto, et al., 2025; Putri, Juandi, Herman, et al., 2025). 

Previous research has significantly contributed to identifying the types of errors 

students make in solving linear equations. del Carmen et al. (2024) found that one of the most 

prevalent challenges is difficulty in formulating equations from word problems, often due to a 

lack of understanding of the relationship between real-world situations and algebraic 

representations. While this study provides an overview of the frequency of errors, it does not 

examine the underlying causes in depth. Expanding on these findings, Izsák and Beckmann 

(2022) investigated students' conceptual understanding of linear equations, focusing on the 

errors arising from misunderstandings related to coefficients and variables. Using interviews, 

the study identified conceptual errors that influence how students solve algebraic problems in 

general. 

Additionally, Sandoval et al. (2023) found that despite receiving more detailed 

instructions, students still struggled to identify and correct their own errors. Through a task-

based approach, this research showed that errors frequently occur during the checking stage, 

where students fail to recognize mistakes even when given time to review. This indicates that 

errors are not solely technical issues but are also related to students' cognitive abilities to assess 

their work. Andrews and Kaplan (2020), analyzing PISA and TIMSS results, revealed that 

similar difficulties in understanding and solving linear equations exist in various countries, 

including Sweden. They emphasize the importance of a systematic approach to teaching, 
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noting that these challenges involve more than technical obstacles. They reflect broader 

conceptual relationships in mathematical. This reinforces that, despite various efforts, 

challenges in understanding linear equations persist. On the other hand, Qetrani et al. (2021) 

introduced a new approach to teaching linear equations based on the concept of equivalence. 

Their study shows that this approach helps students more effectively grasp the relationships 

between steps in solving equations, both procedurally and conceptually, and addresses 

common difficulties. Finally, Smith et al. (2022) studied the development of students' 

symbolic representation in solving systems of linear equations and found that stronger 

symbolic skills can strengthen students' understanding of linear equations and enable them to 

tackle more complex problems. 

In the Indonesian context, similar learning difficulties have also been extensively 

documented, particularly in the domains of algebraic reasoning and functional thinking. 

Fardian et al. (2024) revealed that students frequently encounter learning obstacles arising 

from the gap between arithmetic and algebraic reasoning, especially when interpreting 

contextual problems and transforming them into symbolic equations. Their findings further 

suggest that these obstacles are influenced by both cognitive limitations and didactical factors 

within classroom practices. Likewise, Utami et al. (2023) highlighted that secondary school 

students face persistent challenges in identifying, extending, and generalizing patterns, 

reflecting a limited development of functional thinking as a foundation for algebraic reasoning. 

Collectively, these studies demonstrate that the nature of students’ algebraic difficulties in 

Indonesia extends beyond procedural shortcomings and encompasses deeper conceptual and 

contextual dimensions. 

Although previous research has identified various errors students make when solving 

linear equations, most studies focus on technical and cognitive aspects, typically classifying 

errors as conceptual or computational using quantitative methods (Elkjær & Jankvist, 2021). 

This approach often overlooks deeper influences, such as how students interpret mathematical 

problems and the cognitive and psychological factors shaping their problem-solving process. 

Thus, there is a need for a more holistic approach that considers not only technical errors but 

also interpretative factors and personal experiences impact problem-solving. Additionally, 

much of the existing research has not explored how students' subjective experiences affect 

their understanding of linear equations (Planas et al., 2024). This study adopts a hermeneutic 

phenomenological approach to investigate the cognitive and interpretative processes involved 

in solving linear equations. It aims to explore how students’ perceptions influence their ability 

to solve problems and identify the underlying factors contributing to errors. In addition, this 

research seeks to improve teaching methods by recognizing the factors affecting students’ 

approaches to mathematical problems, helping educators design more effective strategies 

aligned with their cognitive and interpretative needs. 

The main objective of this study is to explore the cognitive and interpretative factors 

influencing student errors in solving linear equations, focusing on how students understand 

and interpret mathematical problems. It aims to identify aspects that have been underexplored 

in prior research, particularly subjective factors and personal experiences that affect problem-

solving. Theoretically, this research aims to deepen our understanding of the cognitive and 

interpretative processes in solving linear equations and contribute to the development of more 
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holistic mathematical education theories. Practically, it offers valuable insights into designing 

teaching methods that address both technical errors and conceptual understanding, while 

incorporating students' personal experiences in mathematical problem-solving. 

 

2. METHOD 

2.1. Research Design 

This study adopted a hermeneutic phenomenological approach as outlined by 

Folgueiras Bertomeu and Sandín Esteban (2023) and Sloan and Bowe (2014) to explore the 

challenges faced by Indonesian junior high school students in solving linear equations. 

Hermeneutic phenomenology emphasizes understanding individuals' lived experiences and 

interpreting the meanings they ascribe to those experiences. This approach is particularly 

suitable for this research, as it seeks to uncover not only the types of errors students make but 

also the underlying cognitive, pedagogical, and contextual factors contributing to these errors. 

By focusing on students' personal interpretations and experiences, this research aims 

to provide a deeper qualitative insight into their learning processes. Unlike traditional 

quantitative approaches, which often focus on statistical trends, hermeneutic phenomenology 

enables a richer understanding of the nuances in students' mathematical reasoning and their 

struggles with abstract concepts. This methodological choice aligns with the study's objective 

to bridge the gap between theoretical understanding and practical application in mathematics 

education, particularly within the Indonesian context. 
 

2.2. Participant and Data Collection 

The participants in this study consisted of 37 seventh-grade students from a junior high 

school located in West Sumatra, Indonesia. The school is a public institution situated in an 

urban area, characterized by moderate academic achievement and a diverse socioeconomic 

student population. These students were purposefully selected based on their current 

engagement with the topic of linear equations in their mathematics curriculum. The selection 

criteria aimed to capture a diverse range of experiences and challenges encountered by students 

during their initial exposure to this foundational algebraic concept. 

To comprehensively understand the students' experiences and difficulties, the data 

collection process was conducted in two stages: Students were assigned a test consisting of 

four problems specifically designed to assess their understanding of linear equations. The test 

was validated by two experts in mathematics education to ensure its theoretical alignment with 

the cognitive and developmental levels of middle school students. It was administered over 

approximately forty minutes, during which students were not allowed to use calculators or 

collaborate with their peers. This controlled setting ensured that the responses reflected each 

student’s individual understanding and problem-solving abilities. 

Following the test, a subset of students participated in semi-structured interviews to 

gain deeper insights into their thought processes, reasoning strategies, and interpretations of 

the problems. Seven students were selected for individual interviews based on an initial 

analysis of their written test answers, which aimed to represent a range of responses, including 

both correct and incorrect solutions. This selection allowed the researchers to gather detailed 
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information regarding the reasoning behind each student’s answers to the test questions. 

During the interviews, each student’s written responses were presented, and they were 

encouraged to explain their reasoning in detail. The interviews focused on understanding the 

students' comprehension of the problems, the steps they took to solve them, and any challenges 

they encountered. To guide the interviews, a set of general questions was prepared, including: 

"What do you understand about this question?", "Can you explain the information and question 

stated in this problem?", "What steps did you take to solve this problem?", and "Did you face 

any difficulties while solving this problem? If so, what were they?". The semi-structured 

format allowed for flexibility, enabling the interviewer to ask follow-up questions to clarify 

students' explanations and reasoning. This process provided a richer understanding of students' 

thought processes, their conceptual understanding, common errors, and the reasoning behind 

their approaches to solving linear equation problems. 

Prior to data collection, the ethical aspects of this study were carefully reviewed to 

ensure compliance with research ethics standards. Official permission was obtained from the 

participating school. All participants provided informed consent in accordance with national 

ethical standards before taking part in the study. They were clearly informed about the study’s 

purpose, procedures, and their right to withdraw at any time without consequence. Throughout 

the research process, all participants were treated ethically in compliance with the standards 

of the American Psychological Association (1992). Participation was entirely voluntary, and 

confidentiality was maintained throughout the study. By triangulating data from these two 

sources, test results and interviews, the study aimed to achieve a holistic understanding of the 

cognitive and pedagogical factors contributing to students' difficulties with linear equations. 
 

2.3. Data Analysis 

The data analysis in this study was conducted using Atlas.ti version 9 software, a 

qualitative data analysis software designed to support the systematic organization and 

interpretation of textual and visual data (Woods et al., 2016). The software was utilized to 

manage and analyze data collected from students' written tests and semi-structured interviews. 

The analysis proceeded in the following stages. First, all written test responses and interview 

transcripts were digitized and imported into Atlas.ti. Interview recordings were transcribed 

verbatim to ensure the accuracy and completeness of the qualitative data. The transcripts were 

then reviewed to correct any errors or inconsistencies. 

Subsequently, coding and categorization were performed using Atlas.ti. The data were 

systematically coded to identify recurring patterns, themes, and categories. The analysis 

focused on three main categories of errors: conceptual errors, procedural errors, and resultant 

errors. Conceptual errors reflected misunderstandings of mathematical concepts, such as 

misinterpreting variables or relationships. Procedural errors involved mistakes in solving 

equations, such as incorrect arithmetic or missing steps. Resultant errors occurred in the final 

solution, typically stemming from earlier conceptual or procedural mistakes. Initial open 

coding was performed to identify instances of these errors, which were then grouped into the 

three predefined categories for further analysis. 

After categorization, a thematic analysis was conducted to examine relationships 

between the three error types and their underlying causes. Atlas.ti's visualization tools, 
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including network maps and co-occurrence tables, were used to identify patterns and 

connections among conceptual, procedural, and resultant errors. The identified themes and 

patterns were then interpreted to provide a comprehensive understanding of the cognitive and 

pedagogical factors influencing students' performance. Particular attention was given to how 

conceptual misunderstandings often led to procedural errors, which ultimately resulted in final 

errors. 

To ensure the reliability of the analysis, coding and interpretations were cross-checked 

by a second researcher. Any discrepancies were discussed and resolved to maintain 

consistency and accuracy. Organizing errors into these three categories using Atlas.ti enabled 

a systematic and rigorous approach to identifying the root causes of students' difficulties with 

linear equations. This approach provided deeper insights into the specific challenges students 

face and informed strategies for effectively addressing these issues. Figure 1 illustrates an 

overview of the entire data analysis process. 
 

 

Figure 1. Research process at each stage 

 

3. RESULTS AND DISCUSSION 

3.1. Results 

The analysis of students’ responses to the linear equation problems highlights several 

recurring patterns of errors, categorized into conceptual errors, procedural errors, and resultant 
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errors following the classification proposed by Bernard and Bright (1984) and Carry et al. 

(1979). These categories were deductively derived from these theoretical frameworks to guide 

the classification and interpretation of students’ responses. These errors reflect the students' 

struggles to understand mathematical concepts, apply systematic procedures, and verify their 

solutions. By closely examining their written answers, it becomes clear that students often 

relied on intuitive or trial-and-error methods, which varied in their levels of accuracy and 

understanding. To illustrate the context and structure of the instrument used to analyze 

students’ responses, the four test problems developed to assess their understanding of linear 

equations are shown in Table 1. 

Table 1. Test instrument problems for assessing students’ understanding of linear equations 

No Problem Statement 

1 When a whole number is multiplied by 2 and then 15 is added to the result, the final answer 

becomes 27. Determine the whole number! 
 

2 If you do not like eating fruit, drinking fruit juice is a good way to start a healthy lifestyle. 

By drinking fruit juice regularly, you can meet the daily recommendation for consuming 

fruits and vegetables, and it may even help prevent certain illnesses. 
 

 
 

During the school anniversary event, your class set up a fruit juice booth and sold the juice 

for Rp7,000.00 per glass. The profit earned is equal to the total revenue from selling the 

juice minus the booth construction cost. The cost of building the booth is Rp90,000.00. 

Determine the minimum number of glasses of juice that must be sold to earn a profit of 

Rp400,000.00! 
 

3 There are various kinds of play equipment in a playground such as swings and seesaws. 

Playgrounds are places where children can gather, socialize, communicate, and reduce 

dependence on smartphone games. Therefore, taking children to a playground is one way to 

reduce smartphone addiction. One day, Bela went to the playground with her mother. At the 

same time, Tomi and Aldi were also visiting the playground. Bela weighs 25 kg and Tomi 

weighs 60 kg. They sit on opposite sides of a seesaw, but the seesaw is unbalanced. 
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No Problem Statement 

Then Aldi comes and sits together with Bela, causing the seesaw to become balanced. 

 
Determine Aldi’s weight so that the seesaw is balanced! 
 

4 You are making your own salad dressing. The recipe below is for 100 mL of dressing: 
 

Ingredient Amount 

Salad Oil 60 mL 

Vinegar 30 mL 

Soy Sauce 10 mL 

 

How many milliliters of salad oil are needed to make 150 mL of the dressing? 
 

 

Table 2 illustrates the indicators of students' abilities in solving linear equation 

problems based on the analysis results of the test instrument, which includes four presented 

problems. Each indicator, category, and code provided in the students' responses displayed in 

Table 2 was processed using the Atlas.ti application. The code label "1-C1" refers to a problem 

in Question 1, categorized under conceptual errors (C), and is the first code (1), specifically 

"Misinterpreting whole numbers". 

Table 2. Indicators, categories, and codes in students' responses based on test results 

Indicator Category Code Code Definition 
Number of 

Students 

Understanding 

the definition 

of linear 

equations 

Question 1 

Conceptual errors 1-𝐶1 Misinterpreting whole numbers 6 

1-𝐶2 Lack of understanding of the 

concept of a linear equation with 

one variable 

20 

Procedural errors 1-𝑃1 Operational errors 11 

Resultant errors 1-𝑅1 Failure to answer the question 9 

1-𝑅2 Misinterpretation of information 12 

Modeling 

mathematical 

problems into 

equations 

Question 2 

Conceptual errors 2-𝐶1 Inability to interpret the problem 

narrative into a mathematical 

statement 

23 

2-𝐶2 Misunderstanding of large numbers 

without units 

21 

Procedural errors 2-𝑃1 Operational errors 29 

Resultant errors 2-𝑅1 Failure to answer the question 9 

2-𝑅2 Misinterpretation of information 9 
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Indicator Category Code Code Definition 
Number of 

Students 

Question 3 

Conceptual errors 3-𝐶1 Lack of understanding of algebraic 

methods 

24 

Procedural errors 3-𝑃1 Operational errors 17 

Solving 

contextual 

problems 

using the 

properties of 

equations 

Question 4 

Conceptual errors 4-𝐶1 Failure to understand that the table 

represents proportional 

distribution, not fixed amounts 

19 

4-𝐶2 Lack of understanding of the 

concept of proportional comparison 

23 

Procedural errors 4-𝑃1 Failure to explain the relationship 

between the calculations and the 

final result 

20 

Resultant errors 4-𝑅1 Failure to answer the question 8 

4-𝑅2 Misinterpretation of information 15 
 

Based on the analysis presented in Table 2, resultant errors were the least frequent type 

of error appearing in students' responses. In contrast, conceptual and procedural errors 

dominated the majority of students' answers in solving single-variable linear equation 

problems. Overall, students continued to struggle with solving contextual problems by 

utilizing the properties of equations and algebraic manipulation. Additionally, many students 

experienced difficulties in translating the given problems into mathematical statements. 

To provide a clearer picture of the challenges students faced in solving these problems, 

Figure 2 presents examples of written responses from two students for Question 1. These 

examples demonstrate the procedural steps taken by each student and highlight both 

conceptual and resultant errors. By analyzing these responses, the study reveals deeper insights 

into the difficulties and misconceptions encountered in solving a basic linear equation. 

Question 1 serves as a foundation for understanding the types of errors that occurred across all 

problems. 
 

  
(a) 

 

(b) 

Figure 2. Example responses from student 1 (a) and student 2 (b) for question 1 

 

Based on Figure 2, which presents the responses of two students to Question 1, several 

patterns of errors can be observed. These responses highlight the challenges students faced in 

understanding and solving a simple linear equation. The students' approaches varied, ranging 

from reliance on trial-and-error methods to more structured procedural attempts. Yet both 

demonstrated significant gaps in conceptual understanding, procedural accuracy, and result 

verification. 
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The analysis of responses to Question 1 reveals a recurring pattern of conceptual errors, 

in which students relied heavily on trial-and-error methods or incomplete reasoning to arrive 

at a solution. For instance, one student tested various numbers by multiplying them by 2 and 

adding 15, stopping only when the correct answer, 6, was reached. This approach reflects a 

lack of understanding of linear equations as a systematic tool to solve relationships between 

variables (code 1-C1 and 1-C2). From a phenomenological perspective, this indicates that 

students struggled to grasp the meaning and utility of equations in simplifying numerical 

relationships. The inability to directly form the equation 2x + 15 = 27 suggests superficial 

engagement with the problem, focusing more on guessing than conceptualizing the underlying 

relationships.  

From a hermeneutic perspective, this reliance on trial-and-error methods highlights a 

misinterpretation of the problem's numerical components, likely stemming from weak 

foundational knowledge of number operations and their roles in equations. For some students, 

the procedural approach appeared more structured, as they successfully formed the equation 

2x + 15 = 27 and applied step-by-step procedures to isolate x. However, in certain cases, 

resultant errors emerged (code 1-R1 and 1-R2). As shown in the provided student responses in 

Figure 1, while the steps to isolate x were correct, the final answer was incorrect (x = 7 instead 

of x = 6). This suggests a failure to verify the solution by substituting it back into the original 

equation. From a phenomenological viewpoint, this error may stem from a lack of reflection 

or confidence in engaging with the problem beyond procedural steps. From a hermeneutic 

perspective, the narrative of the problem might have been misinterpreted, with the student 

focusing on mechanical procedures rather than deeply understanding the context or the 

relationships among the equation’s components. 

Procedural errors were also observed in cases where students misunderstood basic 

arithmetic operations, such as addition and multiplication, further complicating their attempts 

to isolate x (code 1-P1). From a phenomenological perspective, this reflects a gap in their lived 

experiences with arithmetic, hindering their ability to apply basic rules confidently. 

Hermeneutically, these errors may reflect a misinterpretation of the problem’s context, as 

students struggled to connect the narrative of the question to its mathematical representation. 

Furthermore, students who failed to provide an answer at all demonstrated a lack of 

engagement with the problem, possibly due to unclear problem narratives or insufficient 

foundational mathematical knowledge.  

The analysis proceeds with Question 2, which presents new challenges involving 

proportional reasoning and the contextual application of mathematical operations. Figure 3 

provides examples of written responses from two students for Question 2, illustrating their 

approaches and common errors in solving the problem. 
 



 Volume 15, No 1, 2026, pp. 37-58

 

 

47 

  
(a) 

 

(b) 

Figure 3. Example responses from student 3 (a) and student 4 (b) for question 2 

 

Question 2 required students to calculate the minimum number of fruit juice glasses 

needed to achieve a profit of Rp400,000, considering a selling price of Rp7,000 per glass and 

a setup cost of Rp90,000. This problem introduced a real-world context, requiring students to 

apply proportional reasoning and basic arithmetic operations. The analysis of students’ 

responses revealed several recurring errors, which were further explored through follow-up 

interviews. 

Based on Figure 3, it can be observed that Student 3 solved the problem using a basic 

multiplication method, listing multiples of 7 from 1 to 10 to arrive at the final answer of 70. 

Instead of forming a mathematical model, the student relied on a trial-and-error approach, 

multiplying various numbers by 7 until approximating the desired revenue (code 2-C1). This 

method often led to errors in calculation and a lack of verification (code 2-R1 and 2-R2). For 

example, several mistakes occurred in the multiplication results, such as 2×7=12 (should have 

been 14) and 3×7=19 (should have been 21). According to the interview with the student, these 

errors were caused by carelessness in recording the results rather than a lack of understanding 

of multiplication concept (code 2-P1). The following dialogue illustrates the student’s 

explanation: 
 

Researcher : I would like to ask about your answer to Question 2. Can you explain 

how you arrived at your solution? 

Student 3 : I multiplied the numbers from 1 to 10 by 7. So, I wrote 1 times 7 equals 

7, then continued with 2 times 7 equals 14, and so on. 

Researcher : I see some numbers here. For example, in the second row, you wrote 

that 2 times 7 equals 12. How did you get this number? 

Student 3 : Oh, yes. It should have been 14. I made a mistake there. 

Researcher : Did you realize this mistake when you were working on it? 

Student 3 : No, I just realized it now. 
 

This dialogue illustrates the student’s reliance on mechanical methods without 

critically evaluating their calculations. The student did not notice the error during problem-

solving, indicating a lack of verification and reflective practice. Additionally, Figure 3 shows 

that Student 4 did not consider the setup cost when calculating the required profit (code 2-C1), 

leading to a misunderstanding of the relationship between revenue, cost, and profit. The 
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student initially calculated the total revenue correctly but neglected to subtract the setup cost, 

resulting in an incomplete understanding of the problem. This issue was clarified during the 

interview: 
 

Researcher : Did you consider the cost of setting up the stand in your calculations? 

Student 4 : Oh, no. I only calculated the total revenue without including the setup 

cost. 

Researcher : If we subtract Rp490,000 by the setup cost of Rp90,000, what profit 

would you get? 

Student 4 : It should have been Rp400,000, right, Ma’am? 
 

This exchange highlights a conceptual gap in understanding how costs and revenues 

interact to determine profit. The student’s initial response reflects an incomplete grasp of the 

problem’s requirements, while their reaction during the interview suggests a need for 

instructional strategies that emphasize connecting mathematical calculations to real-world 

contexts. This finding also indicates that students’ errors were not solely cognitive but were 

influenced by pedagogical and contextual factors as well. Pedagogically, students’ reliance on 

mechanical procedures stems from earlier learning experiences in elementary and lower 

secondary classrooms that emphasized procedural fluency over conceptual understanding. 

Several students explained that they had never encountered similar problem types in their 

previous schooling, indicating that limited exposure through textbooks, teaching practices, or 

everyday contexts affected their ability to interpret such problems. Contextual influences also 

played a role, as unfamiliar problem situations made it difficult for students to connect real-

world contexts with algebraic representations. These combined factors illustrate how students’ 

difficulties emerged from broader educational and experiential backgrounds, not just from 

their immediate reasoning processes.  

The analysis of Question 3 focuses on students’ approaches to solving the equation 

x+25=60. This question required students to apply algebraic reasoning to isolate x and 

determine its value. However, some students relied on arithmetic methods rather than algebraic 

manipulation, using trial-and-error to identify the correct answer (code 3-C1). Figure 4 presents 

an example of a student’s written response to Question 3, illustrating their approach and the 

challenges encountered. 
 

 

Figure 4. Example responses from student 5 for question 3 

 

Question 3 required students to solve the equation x + 25 = 60 by identifying the value 

of x that satisfies this equation. The correct solution involves isolating x by subtracting 25 
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from both sides, yielding x = 35. However, the student's response, as shown in Figure 4, reveals 

that they did not use algebraic methods to solve the problem. Instead, the student relied on 

arithmetic reasoning and a trial-and-error approach to determine the number that, when added 

to 25, equals 60. From the response, it is clear that the student calculated 60 – 25 = 35 directly, 

without explicitly expressing this operation as part of an algebraic process (code 3-P1). Rather 

than isolating x using algebraic manipulation, the student appeared to have guessed possible 

values for x and verified them by adding to 25. While the final answer of 35 is correct, this 

approach demonstrates a lack of understanding of algebra as a systematic tool for solving 

equations. 

After analyzing the responses to Question 3, which revealed students' reliance on 

arithmetic reasoning rather than algebraic methods, the focus now shifts to Question 4. This 

problem required students to apply proportional reasoning to adjust ingredient quantities in a 

recipe as the total amount changed. Figure 5 illustrates a student’s response to Question 4, 

providing insight into their approach and the challenges encountered. 
 

 
(a) (b) 

Figure 5. Example responses from Student 6 (a) and Student 7 (b) for Question 4 

 

Student 6 solved the problem using an arithmetic approach. They began by calculating 

the difference between the 120 mL sauce recipe and the original 100 mL version, identifying 

a difference of 20 mL. This difference was then added to the initial amount of salad oil, which 

was 60 mL, resulting in an adjusted quantity of 80 mL. Finally, the student combined all 

adjusted ingredient quantities, including vinegar and soy sauce, to ensure the total matched the 

required 120 mL. 

Another student approached the problem using a proportional method, but with a 

slightly different calculation process. They started by dividing the original quantity of 100 mL 

sauce by the 60 mL salad oil, resulting in a ratio of approximately 1.66. The ratio was then 
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multiplied by the additional 20 mL difference (i.e., 120 mL - 100 mL), yielding an adjusted 

value of 33.2 mL. Adding this to the original 60 mL salad oil, the student calculated the final 

amount as 93.2 mL. 

Based on interviews conducted with students, the challenges they encountered in 

solving mathematical problems were not solely due to difficulties in understanding specific 

concepts. Their reliance on habitual problem-solving methods also contributed. For instance, 

one student admitted to preferring trial-and-error approaches when working on algebraic 

equations, as they found it easier than systematically applying algebraic rules. This reliance on 

informal strategies highlights a gap in their ability to generalize problem-solving methods to 

different contexts. 

Additionally, interviews revealed that some students misinterpreted the narratives of 

contextual problems, particularly those involving proportional reasoning (code 4-C1 and 4-C2). 

One student explained their struggle to connect mathematical operations to the real-world 

context, stating, "I just calculated the numbers, but I didn’t think about how they relate to the 

question" (code 4-P1). This response indicates a tendency among students to focus on 

numerical operations without fully grasping the broader relationships between variables. 

The findings also suggest that students' challenges were compounded by a lack of 

confidence in verifying their solutions (code 4-R1 and 4-R2). A student reflected, "I didn’t 

check my answer because I wasn’t sure how to confirm if it was correct." This lack of 

verification demonstrates the need for instructional strategies that emphasize reflective 

practice and encourage students to critically evaluate their answers. The interviews provide 

valuable insights into the cognitive and interpretative barriers faced by students, underscoring 

the importance of integrating contextual examples and encouraging critical reflection to bridge 

the gap between procedural fluency and conceptual understanding. 
 

3.2. Discussion 

The findings of this study underscore the multifaceted challenges students face in 

solving problems involving linear equations and proportional reasoning. These challenges are 

categorized into conceptual errors, procedural errors, and resultant errors, as illustrated in 

Figure 6, which maps the interconnections between these types of errors and their underlying 

causes. 
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Figure 6. Errors experienced by students in linear equations 

 

As shown in Figure 6, these errors are closely interrelated: conceptual 

misunderstandings often lead to procedural errors, which in turn result in incorrect answers. 

The analysis highlights not only gaps in students' mathematical knowledge but also challenges 

in interpreting and applying mathematical concepts to real-world or abstract problems. In 

Figure 6, green nodes represent phenomenological themes, focusing on students' lived 

experiences and conceptual understanding, while red nodes represent hermeneutic themes, 

emphasizing interpretative reasoning and procedural missteps. The connections between 

nodes illustrate how phenomenological and hermeneutic challenges are interconnected and 

contribute to resultant errors. 

From a phenomenological perspective, students’ reliance on arithmetic reasoning 

demonstrates their preference for familiar numerical operations over algebraic abstraction. 

This suggests that students often perceive algebraic problems as straightforward arithmetic 

challenges rather than as opportunities to apply algebraic methods. Such perceptions are 

influenced by various factors, including the developmental progression of algebraic thinking, 

the role of representations in problem-solving, and instructional approaches (Jupri et al., 2014; 

Putri, Juandi, Turmudi, et al., 2025). In the framework proposed by Brousseau (2002), errors 

that occur due to limitations in the initial context or situation when students learn a concept 

are categorized as epistemological obstacles. These epistemological obstacles become evident 

when students’ understanding is effective within the context of arithmetic methods but cannot 

be applied flexibly within the context of algebraic methods. 

The developmental progression of algebraic thinking shows that students typically 

transition from concrete arithmetic reasoning to abstract algebraic reasoning. According to 
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Sun et al. (2023), students initially engage with manageable arithmetic tasks, which leads them 

to view algebraic problems through an arithmetic lens. This tendency is supported by Bye et 

al. (2022), who emphasize the critical role of arithmetic representations in algebra problem-

solving strategies, often limiting students’ flexibility in engaging with algebraic concepts. Ünal 

et al. (2023) also highlights that while students may develop visual and symbolic 

representations in algebra, the transition from arithmetic to algebraic reasoning is not 

straightforward, which can prevent students from fully appreciating the distinct nature of 

algebraic tasks. According to Brousseau (2002), errors arising from a misalignment between 

the level of instruction and students’ cognitive readiness can potentially result in ontogenic 

obstacles. Suryadi (2019) further classifies this phenomenon as instrumental ontogenic 

obstacles, referring to obstacles stemming from technical limitations. These obstacles manifest 

when students interpret algebraic problems through an arithmetic rather than an algebraic 

framework, thereby hindering their ability to engage effectively with the learning process. 

Instructional strategies play a pivotal role in helping students shift their perceptions of 

algebra from an extension of arithmetic to a unique mathematical domain. Cai and Hwang 

(2022) stress the importance of embedding algebraic ideas within arithmetic contexts to 

deepen students' understanding of algebraic relationships. Effective teaching practices that 

emphasize the conceptual understanding of the equals sign and the relational nature of algebra 

can also bridge the cognitive gap between arithmetic and algebra (Baiduri, 2015). For instance, 

Kieran and Martínez-Hernández (2022) discuss the necessity of coordinating computational 

and structural approaches to enhance students’ understanding of equivalence, a fundamental 

aspect of algebraic reasoning. 

Additionally, integrating visual aids and diagrams into algebra instruction has been 

shown to support students in connecting arithmetic and algebraic concepts. Research suggests 

that students who construct diagrams can use informal arithmetic strategies to solve algebraic 

problems, making these problems more accessible (Chu et al., 2017). This aligns with Nathan 

and Koellner (2007), who argue that a solid understanding of arithmetic provides a strong 

foundation for algebraic reasoning. 

From a conceptual standpoint, many students struggled to grasp fundamental ideas 

such as variable representation, proportional reasoning, and the principle of equality in 

equations. Jupri and Drijvers (2016) emphasize that these difficulties often arise when students 

attempt to mathematize word problems. Their study revealed that students frequently failed to 

construct accurate mathematical models from real-world contexts, reflecting a gap in both 

horizontal and vertical mathematical understanding. This issue was evident in Question 4, 

where students misinterpreted proportional relationships and miscalculated adjustments for 

varying ingredient amounts. These findings are consistent with Jupri and Drijvers' conclusions 

regarding students' struggles to bridge contextual understanding and symbolic algebra. Based 

on Brousseau’s (2002) framework, these difficulties can be categorized as epistemological 

obstacles. Such obstacles arise when students’ prior knowledge or conceptual frameworks are 

insufficient or inappropriate for understanding new mathematical concepts. In this context, 

students’ inability to represent variables, apply proportional reasoning, and interpret the 

principle of equality reflects limitations in their existing knowledge structures, which hinder 
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their ability to construct accurate mathematical models and transition effectively from 

contextual understanding to symbolic algebraic reasoning. 

The hermeneutic perspective sheds light on the interpretative processes students use to 

make sense of mathematical problems. Many errors arose from misinterpretations of problem 

narratives or instructions, leading to incorrect assumptions about the relationships between 

quantities. For example, in Question 2, some students miscalculated profit by failing to 

subtract setup costs from revenue, reflecting a misunderstanding of the problem's 

requirements. Mengistie (2020) similarly emphasizes the importance of clear problem 

narratives to support structured reasoning. Within Brousseau’s (2002) framework, errors that 

emerge as a consequence of the design of the instructional process are categorized as didactical 

obstacles. These obstacles occur when the teaching methods, materials, or explanations 

provided by the teacher fail to adequately support students’ conceptual understanding or 

problem-solving processes (Fardian, Suryadi, & Prabawanto, 2025). As a result, students 

struggle to construct meaningful connections between the given information and the 

underlying mathematical concepts, ultimately impeding effective learning. 

Procedural missteps, such as skipping essential steps or relying on trial-and-error 

methods, were prevalent and indicate gaps in students' structured mathematical reasoning. As 

shown in Figure 5, these procedural errors often stemmed from incomplete conceptual 

understanding. For instance, students frequently made errors in proportional calculations, such 

as failing to multiply by the total volume in scaling problems. These findings align with 

Kwakye (2020), who recommends using alternative strategies, such as the flag diagram and 

least common multiple (LCM) methods, to build procedural fluency and improve accuracy in 

solving proportional problems. In Brousseau’s (2002) framework, errors that occur due to a 

lack of prerequisite knowledge, such as skipping essential steps or relying on trial-and-error 

methods, can lead to ontogenic obstacles. Suryadi (2019) further classifies this type of obstacle 

as a conceptual ontogenic obstacle, which arises when the instructional design does not 

correspond to students’ prior experiences or background knowledge. 

A notable observation from the analysis is the limited reflective thinking among 

students, which hindered their ability to recognize and correct mistakes. For instance, students 

who miscalculated did not verify their solutions by substituting the answers back into the 

equations, leading to repeated errors. This lack of verification reflects a broader issue: students’ 

low confidence in critically engaging with their solutions. Fardian et al. (2024) further note 

that students' reliance on mechanical procedures, rather than interpretative reasoning, prevents 

them from fully understanding problem contexts. 

 

4. CONCLUSION 

Based on the research findings, students face significant challenges in solving linear 

equations, primarily due to conceptual errors, procedural errors, and resultant errors. These 

errors are often interconnected: conceptual errors frequently lead to procedural mistakes, 

which then result in incorrect final answers. The study highlights the importance of addressing 

not only the technical aspects of error correction but also the cognitive and interpretative 

factors that influence students’ problem-solving abilities. The findings underscore the need for 

instructional strategies that foster a deeper conceptual understanding and encourage reflective 
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practices. By bridging the gap between procedural fluency and conceptual comprehension, the 

study provides valuable insights for educators to design more effective teaching methods, 

tailored to the cognitive needs and learning experiences. These insights can help enhance 

students' overall problem-solving skills and their understanding of linear equations in algebra. 

Based on the conclusion of this study, it is recommended that educators incorporate 

more holistic teaching strategies that target both the procedural and conceptual dimensions of 

linear equations. Additionally, fostering a learning environment where students are 

encouraged to reflect on their solutions and think critically about their approach will further 

develop their problem-solving abilities. Furthermore, educational interventions should address 

the cognitive barriers that prevent students from applying systematic methods when solving 

algebraic problems. 

Beyond its empirical findings, this study highlights the unique methodological 

contribution of the hermeneutic phenomenological approach in mathematics education 

research. Unlike conventional error analyses that primarily focus on categorizing or 

quantifying students’ mistakes, this approach enables a deeper interpretation of how students 

experience and make sense of their problem-solving processes. By emphasizing meaning and 

context, it reveals the cognitive and experiential dimensions underlying mathematical errors, 

offering richer insights into the complexities of learning algebra and informing future 

qualitative studies in mathematics education. 
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