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Abstract 

This study investigates learning obstacles encountered by pre-service mathematics teachers in 

constructing proofs for geometric transformations, a topic that has not been extensively examined in 

previous research. In contrast to prior studies, this research identifies specific types of errors, as well 

as their interconnections, representing the first step in uncovering learning obstacles. The study 

followed the four steps of phenomenology: bracketing, intuiting, analyzing, and describing, using 

written tests and interviews to explore students' errors. The findings reveal that errors can be 

categorized into three types: visualization errors, conceptual errors, and procedural errors. The 

analysis of their interconnections revealed that conceptual errors were the primary factor contributing 

to both procedural and visualization errors. Analyzing these errors led to the identification of 

epistemological obstacles, which manifested when participants struggled to apply fundamental 

concepts—such as injectivity, surjectivity, and bijectivity—to more complex tasks. Therefore, the 

study concludes that the primary learning obstacle discovered is an epistemological obstacle. 
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1. INTRODUCTION 

Geometric transformations are fundamental in the field of mathematics, helping 

students develop spatial thinking, analytical reasoning, synthesis, and problem-solving 

skills. As Aktaş and Ünlü (2017) note, understanding geometric transformations supports 

students' development in spatial thinking and reasoning. Additionally, Kribbs and Rogowsky 

(2016) highlight that these concepts are crucial for constructing mathematical proofs. 

Despite its importance, many university students encounter significant difficulties in 
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mastering this topic. A study by Kusuma and Setyaningsih (2015) revealed that they often 

face challenges in understanding the foundational concepts of geometric transformations. 

Several studies have highlighted the challenges students face in understanding 

geometric transformations. Kusuma and Setyaningsih (2015) found that students struggled 

to grasp fundamental transformation principles and connect them to functions. Similarly, 

Noto et al. (2019) reported difficulties in both understanding and applying transformation 

concepts. Furthermore, Napfiah and Sulistyorini (2021) identified frequent conceptual errors 

that hindered students' learning progress. Beyond conceptual challenges, other research has 

focused on difficulties related to proof construction in geometric transformations. Indahwati 

(2023) noted significant struggles with proof construction, particularly in organizing logical 

arguments. Likewise, Maifa (2019) observed that students lacked the conceptual clarity 

needed to construct rigorous proofs and effectively apply transformation properties. 

In addition to challenges in proof construction, errors in fundamental geometric tasks 

have also been documented. Aulia et al. (2023) found that students frequently misplace 

points and struggle to accurately identify the images of transformed objects, reflecting 

difficulties with visualization. Furthermore, Anwar et al. (2021) noted that university 

students often rely on rigid proof formats and face challenges in applying mathematical 

reasoning beyond predefined templates. Similarly, Sundawan (2018) emphasized that 

students encounter difficulties in visualizing geometric objects, understanding the principles 

of mathematical proofs, and employing appropriate reasoning strategies. Taken together, 

these studies suggest that students' difficulties in geometric transformations encompass 

conceptual understanding, procedural execution, and visualization. 

Despite extensive research on student errors in geometric transformations, previous 

studies (Kusuma et al., 2024; Napfiah & Sulistyorini, 2021; Nurcahyo et al., 2024; Nurdiana 

et al., 2021; Sahara et al., 2023; Sunariah & Mulyana, 2020; Uygun, 2020) have primarily 

focused on categorizing errors into conceptual, procedural, or visualization-based types. 

While this approach provides valuable insights, it does not fully address the underlying 

learning obstacles that contribute to these errors. Moreover, existing research has yet to 

explore how these distinct types of errors may be interconnected. For example, students who 

make procedural errors in proof construction may do so as a result of deeper conceptual 

misunderstandings, while those who struggle with visualization may have difficulty fully 

grasping the transformation properties. Understanding the interrelationship between these 

errors is essential for identifying the fundamental barriers that hinder students' mastery of 

geometric transformation proofs. 

A study by Noto et al. (2019) investigated learning obstacles in transformation 

geometry but addressed the topic in a broad manner, identifying general difficulties such as 

comprehension issues, visualization struggles, challenges in defining transformation 

principles, problems with proof comprehension, and difficulties in interpreting problems. 

However, similar to previous studies (Kusuma et al., 2024; Napfiah & Sulistyorini, 2021; 

Nurcahyo et al., 2024; Nurdiana et al., 2021; Sahara et al., 2023; Sunariah & Mulyana, 2020; 

Uygun, 2020), this research did not explore the interrelationships between various types of 

difficulties. Moreover, it did not analyze these learning obstacles within the context of 

Brousseau’s theoretical framework, thereby leaving a gap in understanding how these 
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obstacles correspond to epistemological, ontogenic, or didactical obstacle in mathematical 

learning (Brousseau, 2002). 

Epistemological obstacles emerge when students face challenges integrating new 

knowledge with their existing understanding, which subsequently hampers their ability to 

apply learned concepts to more advanced tasks (Araújo & Menezes, 2022; Dewi et al., 2022; 

Jatisunda et al., 2025; Maknun et al., 2022; Sari et al., 2024; Siagian et al., 2022; Sulastri et 

al., 2022). Ontogenic obstacles, on the other hand, are related to a student's cognitive 

development. These obstacles occur when tasks are either too complex or too simplistic, 

leading to ineffective learning. When tasks are too difficult, students may feel overwhelmed, 

while tasks that are too easy fail to engage them deeply, thus hindering meaningful learning. 

Finally, didactical obstacles are linked to the instructional design (Fardian et al., 2025; 

Fitriani & Widjajanti, 2024; Kandaga et al., 2022; Kuncoro et al., 2024; Nurdiana et al., 

2021; Sunariah & Mulyana, 2020; Uygun, 2020). These obstacles arise when the sequencing 

or structure of learning materials does not align with students' cognitive development, 

creating gaps in their understanding. 

To address these gaps, this study investigates the interconnections between 

conceptual errors, procedural mistakes, and visualization difficulties in the process of 

constructing proofs for geometric transformations. By examining these interrelationships, 

this study seeks to uncover the learning obstacles underlying students' struggles, providing 

a comprehensive understanding of the cognitive barriers they face in proving  

transformations. Unlike previous studies that merely identify student errors, this research 

aims to bridge the gap by identifying the learning obstacles that contribute to these 

difficulties, thereby offering deeper insights into the challenges that hinder students’ success 

in mastering proof construction in geometric transformations. 

 

2. METHOD 

This study adopts qualitative research methodology with a phenomenological 

approach to explore and describes the specific errors made by pre-service mathematics 

teachers in constructing proofs of transformation. The primary focus of this research is to 

analyze and understand the challenges encountered by pre-service mathematics teachers in 

mastering the formal concept of geometric transformations as bijective mappings and in 

applying these concepts to proof construction. Furthermore, this study aims to identify the 

underlying learning obstacles that contribute to these errors. 

The phenomenological approach is grounded in a strong philosophical foundation, 

as articulated by Edmund Husserl, emphasizing the importance of suspending 

preconceptions to understand phenomena in their purest form (Tuffour, 2017). This approach 

offers a framework for exploring how individuals interpret and make sense of their 

experiences through descriptive and interpretative analyses. To support this approach, the 

phenomenological research process is conducted through four main steps: 
 

Bracketing 

In this phase, Sanders emphasizes that researchers must suspend any initial 

assumptions or beliefs regarding the phenomenon under investigation to ensure objective 
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data analysis (Greening, 2019). Bracketing is thus a key process in phenomenological 

reduction, enabling phenomena to be understood in their purest form. During this stage, the 

researcher identifies initial preconceptions, designs the test, administers it to students, and 

collects their responses. 

a. Identifying Initial Preconceptions: The researcher assumes that participants make errors 

at three critical stages of proof construction: proving that a mapping is a function, 

proving the injectivity property, and proving the surjectivity property. 

b. Designing an Unbiased Test: The researcher selects problems from relevant geometric 

transformation textbooks. The test includes tasks requiring formal proof of a mapping's 

qualification as a geometric transformation, as well as the identification of the injectivity 

and surjectivity properties of the given mapping. 

c. Documenting Student Responses: All participants' responses are systematically collected 

for subsequent analysis. 
 

Intuiting 

Following the bracketing process, the intuiting stage centers on understanding the 

meaning that students assign to the phenomena they encounter. Moustakas underscores the 

significance of the researcher’s active engagement in deeply comprehending the 

participants’ experiences (Greening, 2019). This stage is primarily concerned with exploring 

participants' perspectives and identifying the errors they make. 

a. Interviews: After the test, participants are interviewed to delve into their thought 

processes. 

b. Documenting Interview Dialogues: Relevant excerpts from the interviews are recorded 

and utilized as supporting data for the research findings. 
 

Analyzing 

In this stage, the collected data undergoes analysis through coding and categorization 

processes. According to Polkinghorne, phenomenological analysis involves identifying 

overarching themes within the data (Greening, 2019). During this phase, data from both tests 

and interviews are examined to detect error patterns and uncover underlying learning 

obstacles. 

a. Error Categorization: participants' responses and interview transcripts are systematically 

coded and classified according to error categories. 

b. Data Presentation in Tables: The findings are summarized in tables, listing, types of 

errors, frequency of errors, identified learning obstacles. 
 

Describing 

The final stage entails constructing a descriptive narrative derived from the analyzed 

data. According to Greening (2019), phenomenological description seeks to offer a profound 

and comprehensive understanding of the phenomena under study. This stage is dedicated to 

synthesizing the research findings into a cohesive narrative. 

a. Explaining findings from tables: This step involves elucidating the findings presented in 

the tables, with a focus on identifying the most prevalent error types and the emerging 

categories of errors. 
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b. Describing the relationship between error types and learning obstacles: In this step, the 

relationship between error types and learning obstacles is articulated, illustrating how 

specific errors are linked to particular learning obstacle.  

 

2.1. Participants 

The participants of this study were selected using criterion sampling, a purposive 

sampling method where individuals are chosen based on specific predetermined criteria 

(Tuffour, 2017). This method intentionally prioritizes participants who can provide 

meaningful insights into specific experiences relevant to the study (Alase, 2017). The study 

involved 19 pre-service mathematics teachers enrolled in the Mathematics Education 

program at Universitas Timor, Indonesia.  

Participant selection was based on a set of criteria related to their academic 

background and course enrollment, ensuring that they had sufficient exposure to the topic of 

geometric transformations. The inclusion criteria were as follows: 

a. Enrollment in the Geometric Transformations course, ensuring participants had prior 

exposure to geometric transformation proofs. 

b. Completion of coursework on geometric transformations or related topics, confirming 

their familiarity with relevant theories. 

c. Demonstrated knowledge of mathematical proof techniques, validated through academic 

records and lecturer confirmation. 

d. Willingness to to engage in problem-solving tasks and participate in interviews as part 

of the study. 
 

To validate these criteria, participants were selected from students who had 

successfully completed the Geometric Transformations course, ensuring their exposure to 

formal proof techniques related to geometric transformations. Eligibility was confirmed 

through course enrollment records and lecturer verification, ensuring that participants met 

the necessary knowledge requirements. 
 

2.2. Data Collection 

Data were collected using two primary methods: tasks and semi-structured 

interviews. 

Tasks 

Participants were given a structured task designed to assess their ability to construct 

mathematical proofs related to geometric transformations. The task aimed to explore how 

participants approach proof construction and identify potential challenges in applying formal 

mathematical definitions and logical reasoning. The selection of this task was justified by its 

inclusion in widely used university-level geometry textbooks. A review of four such 

textbooks commonly used in Indonesia revealed that three out of the four included this 

problem as a primary example for explaining transformation proofs. The following are the 

titles of the university-level geometric transformation textbooks that feature this type of 

problem: Geometri Transformasi (Budiarto, 2015); Tangkas geometri transformasi: Cepat 

tepat menguasai geometri transformasi (Kurniasih & Handayani, 2017); Geometri 
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Transformasi (Darhim & Rasmedi, 2014); and Geometri Transformasi (Nugroho et al., 

2018). 

To ensure its relevance to this study, only minor modifications were made to the 

naming of points, lines, and functions, without altering the fundamental structure of the 

problem. These adjustments aimed to preserve the integrity of the problem while enabling 

the exploration of participants' approaches and reasoning in proof construction. The task was 

designed to prompt students' understanding and problem-solving strategies by requiring 

participants to engage in two primary activities. The two primary activities required of 

participants were: 

a. Constructing visual representations to illustrate the mapping. 

b. Formally proving whether the given mapping qualifies as a transformation. 
 

These two tasks provide insights into how students connect abstract mathematical 

definitions with concrete problem-solving strategies, which may, in turn, help identify errors 

and potential learning obstacles in proof construction. The task used in this study is presented 

in Figure 1. 
 

 

Figure 1. Task of proving a transformation 

 

Semi-Structured Interviews 

After completing the task, participants participated in semi-structured interviews 

designed to gain deeper insights into their engagement with the task and their problem-

solving processes during proof construction. The interviews specifically aimed to explore 

their understanding of the task requirements and the strategies they employed in constructing 

the proof. The interview structure focused on investigating: 

a. Participants' understanding of the mapping and task requirements. 

b. The steps they took to verify the properties of the transformation, specifically injectivity 

and surjectivity. 

c. Challenges they encountered during the proof process. 

 

2.3. Data Collection Process 

Participants completed the tasks individually in a quiet, distraction-free environment 

to ensure full concentration. Each participant was allotted 60 minutes to complete the 
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assigned task, which was considered sufficient based on the problem's complexity and 

preliminary testing. After task completion, the researcher reviewed the responses over the 

course of one day to prepare targeted interview questions based on the students' answers. 

The following day, face-to-face interviews were conducted to explore participants’ 

approaches to the task and the reasoning behind any difficulties or errors they encountered. 

Each interview lasted between 30 and 45 minutes and was audio-recorded with the 

participants' informed consent. The focus was on understanding how they approached the 

task and the underlying reasons for any errors made. These steps ensured the thoroughness 

and consistency of the data collection process, providing a detailed understanding of 

participants’ experiences and strategies during the proof construction process. 
 

2.4. Data Analysis 

In line with the phenomenological approach employed in this study, data analysis 

was conducted in accordance with the four key phases of phenomenological research: 

Bracketing, Intuiting, Analyzing, and Describing. Following the administration of the test 

and the collection of participants' responses during the Bracketing phase, as well as the 

interviews conducted in the Intuiting phase, the analysis then progressed through the 

Analyzing and Describing phases. These latter stages involved coding, categorization, 

interpretation, and presentation, ensuring a structured and systematic examination of the 

data. The analysis proceeded through the following steps: 

Coding (Analyzing) 

The responses from participants’ task solutions and interviews were carefully 

reviewed to identify recurring elements and key insights related to their approaches to proof 

construction. Coding was applied systematically to extract important features from the data. 
 

Categorization (Analyzing) 

The identified codes were grouped into broader categories representing the key 

challenges in proof construction. These categories were formed based on recurring patterns 

observed in the data, reflecting common themes related to difficulties students faced during 

proof construction. The categorization process allowed for a deeper examination of the 

underlying challenges encountered by participants. 
 

Interpretation (Describing) 

After coding and categorization, the data were further analyzed to explore the 

connections between the identified challenges and potential learning obstacles. This phase 

involved interpreting how errors or difficulties in proof construction were linked to specific 

barriers in learning, such as didactical, epistemological, or ontogenetic obstacles. 
 

Presentation (Describing) 

The findings were synthesized into comprehensive narratives and tables, 

emphasizing recurring errors, their frequency, and the corresponding learning obstacles. The 
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results were systematically presented in both structured narratives and tables, offering a clear 

and comprehensive summary of the findings while supporting their interpretation. 

 

3. RESULTS AND DISCUSSION 

3.1. Results 

This section presents the findings from the analysis of participants' responses to the 

given task, focusing on the types of errors identified in their attempts to: (1) visualize the 

mapping as specified in the task, and (2) determine whether the mapping qualifies as a 

transformation. The data, collected from 19 pre-service mathematics teachers, were 

categorized into three main error types—conceptual, procedural, and visual—based on the 

framework outlined in the methodology. 
 

3.1.1. Bracketing and Intuiting Phases: Identification and Exploration of Student Responses 

Participants completed the written test individually, and their responses were 

analyzed to identify emerging error patterns. The responses were classified into three 

categories: correct responses, responses with errors, and no responses. Table 1 provides a 

summary of participants' performance across both tasks. 

Table 1. Summary of participants’ responses to the tasks 

Task Category 
Number of 

Students 
Percentage (%) 

Task 1 – 

Visualizing the 

mapping 

Correct 13 68 

Incorrect 6 31 

No. respon 0 0 

Task 2 – Profing 

Transformastion 

Correct 2 10 

Incorrect 13 68 

No response 4 21 

 

Based on Table 1, there is a notable difference in participants' performance between 

visualizing the mapping and proving the transformation. A total of 68% of students 

successfully visualized the transformation, while 10% provided a correct proof. In Task 1 

(Visualization), all students attempted the task, with no non-responses. However, in Task 2 

(Proof Construction), 21% of students did not respond.  

Although all participants attempted the visualization task, not all representations 

were correct. Some participants misinterpreted the transformation, leading to incorrect visual 

depictions. Figure 2 presents an example of an incorrect visualization, where the student 

incorrectly placed M' as the midpoint. Instead of correctly identifying the midpoint as the 

center between points S and M, the student positioned it closer to one endpoint, disrupting 

the symmetry required for an accurate transformation representation. 
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Figure 2. Answer to visualize the transformastion 

 

To further investigate the reasoning behind this mistake, follow-up interviews were 

conducted with participant who made that error, as shown in Figure 3. 
 

 

Figure 3. Interview with participant about the  answer in Figure 1 

 

Recognizing that 21% of participants (4 participants) did not provide any response 

in Task 2 (Proof Construction), further interviews were conducted to understand the 

difficulties they faced in initiating or constructing the proof. The interviews revealed that 

participants who left the question unanswered generally felt they lacked sufficient 

understanding to begin the proof, both in terms of the definition of transformation and the 

proof strategies required. Figure 4 presents selected excerpts from the interviews, illustrating 

the reasons behind their struggles. Of the 4 participants who did not respond at all in Task 

2, one participant successfully visualized the mapping in Task 1. This participant is 

represented by S3 in the following interview. 
 

 

Figure 4. Interview with the participants who failed to respond to task 2 

 

R: Can you explain how you determined the position of M'? 

S1: "I thought the midpoint should simply be somewhere between the two 

points. I placed it in between without considering the exact distances." 

 

R: "You successfully visualized the mapping, but you didn’t attempt the 

proof. Why? 

S1: "I understood how to visualize the mapping because it seemed easy, 

but when it came to proving it, I had no idea where to start, so I didn’t 

answer at all." 

R: "Do you know that the initial step in the proof is to verify whether this 

mapping is a function and then determine whether it is a bijective?" 

S2: "I didn't know that. I just illustrated the mapping based on the given 

information, but beyond that, I had no idea what to do. 

R: "But do you know what a function is?" 

S3: "Yes, I do. A function means that each element in the domain is paired 

with exactly one element in the codomain." 

 

 

 

 

 

 

 



Maifa, Suryadi, & Fatimah, Identifying learning obstacles in proof construction for geometric … 682 

While some participants did not attempt Task 2 at all, the majority (68%) attempted 

the proof but made errors. One common mistake observed in s responses was their tendency 

to identify the mapping as a function without verifying the required properties of a 

transformation. As shown in Figure 5, one student correctly stated that each point in the 

domain has exactly one corresponding image in the codomain but did not address the 

injectivity or surjectivity of the mapping. When asked why he only stated that the mapping 

was a function, the participant explained that he assumed this was sufficient to qualify as a 

transformation. 
 

 

Figure 5. Participant 1’s answer to prove the transformation 

 

Another common error observed in participant's responses was the misalignment 

between the assigned domain and codomain elements and the given mapping definition. As 

illustrated in Figure 6, the student provided a structured representation of the mapping, 

specifying the domain and codomain sets. However, the assigned elements did not conform 

to the actual transformation rule. Additionally, in points (a) and (b), the student incorrectly 

stated function properties as transformation criteria. While these conditions ensure that the 

mapping is a function, they do not establish the necessary conditions for it to be classified 

as a transformation. 
 

 

Figure 6. Participant 2’s answer to prove transformation 
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To gain deeper insights into why students misinterpreted the conditions of a 

transformation, interviews were conducted, as shown in Figure 7. 
 

 

Figure 7. Interview with the student about the answer in Figure 6 

 

The last example represents a common incorrect response frequently observed 

among students. As shown in Figure 8, the student attempted to prove only one property of 

the transformation—injectivity—while completely neglecting surjectivity. However, even 

within the proof of injectivity, errors were present. The participant who provided this 

response explained that they struggled with proof by contradiction, as it was their first 

encounter with such a method, and they were unable to grasp its logical flow. When asked 

about the concept of injectivity in relation to the “if P≠R then G(P) ≠ G(R)”, the student did 

not recognize it as a formal condition for an injective function. Instead, they wrote this 

statement at the end of the proof, mistakenly assuming it was a natural outcome rather than 

a fundamental condition that needed to be stated at the beginning of the proof. 
 

 

Figure 8. Answer to prove the injective function 

 

 

R:  "Why did you assign specific elements to the domain and codomain? 

Why did you choose integers? And why did you claim that these function 

criteria define a transformation?" 

S4: "I just wanted to provide an example of the domain and codomain 

because integers are commonly used. As for the transformation, I 

understood that a transformation is simply a function." 
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3.1.2. Analyzing Phase: Systematic Coding and Categorization of Errors 

Based on students' responses and interview findings, a systematic coding process was 

employed to classify errors into three main types: conceptual errors, procedural errors, and 

visual errors (see Tables 2 to 4). This classification was guided by recurring patterns 

observed in students' incorrect answers and their explanations during interviews. The 

categorization process enabled a structured analysis of students' difficulties, highlighting 

specific areas where misconceptions or weaknesses in reasoning occurred. 

Conceptual errors were identified when participants demonstrated fundamental 

misunderstandings of transformation properties, such as failing to recognize that a valid 

transformation must be bijective, meaning it satisfies both injectivity and surjectivity (see 

Table 2). These errors were evident in students' inability to connect definitions to the 

structure of the proof. The detailed classification is provided in Table 2. 

Table 2. Indicators of conceptual errors 

Aspect of Analysis Error Indicators Error Code 

Understanding of 

Bijective Functions 

participants fail to understand that transformations 

are bijective functions, meaning they satisfy the 

properties of injectivity and surjectivity. 

CE1 

Understanding of 

Injectivity 

participants cannot explain or demonstrate that if 

P≠R then G(P) ≠ G(R) 

CE2 

Understanding of 

Surjectivity 

Participants are unable to show that every element 

in the codomain has a corresponding preimage in 

the domain. 

CE3 

Understanding of 

function 

Participants Fail to understand functions, their 

conditions, and how to apply function concepts. 

CE4 

 

Procedural errors were observed when participants struggled with the application of 

logical proof strategies, particularly in constructing a proof by contradiction (see Table 3). 

Many students failed to provide a structured argument or omitted key logical steps in their 

reasoning. The detailed classification is provided in Table 3. 

Table 3. Indicators of procedural errors 

Aspect of Analysis Error Indicators Error Code 

Function Verification participants fail to verify that each element in the 

domain has exactly one corresponding image. 
PE1 

Injectivity Proof with 

Contradiction 

participants fail to construct a logical argument by 

contradiction to prove the injectivity property. 

PE2 

Surjectivity Proof participants do not use a systematic approach to 

demonstrate that every element in the codomain 

has a preimage in the domain. 

PE3 

 

Visual errors were characterized by mistakes in representing the mapping 

geometrically, such as misplacing critical points or incorrectly identifying relationships 

between elements in the domain and codomain (see Table 4). These errors often stemmed 
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from intuitive reasoning rather than formal mathematical analysis. The detailed classification 

is provided in Table 4. 

Table 4. Indicators of visual errors 

Aspect of Analysis Error Indicators Error Code 

Breaking Down the 

Source 

participants fail to extract key information from the 

given mapping definition or misunderstand the 

relationship between the points involved in the mapping 

VE1 

Initial Coordination participants do not correctly identify the domain 

elements or the codomain elements to construct an initial 

visual representation. 

VE2 

Setting the Target participants are unable to construct a proper diagram 

showing the mapping process, including the correct 

positioning and relationships of points. 

VE3 

 

 

To provide a quantitative overview of the distribution of categorized error types, 

Table 5 presents the frequency of conceptual, procedural, and visual errors observed in each 

task. This classification is based on the coding process conducted earlier, which identified 

common error patterns in students' responses to the visualization of the mapping (Task 1) 

and the proof of the transformation (Task 2). 

Table 5. Distribution of conceptual errors across tasks 

Error Code Task 1 Task 2 
Percentage 

(%) 

CE1 - 4 21 

CE2 - 11 58 

CE3 - 6 31 

CE4 6 -  

PE1 - 4 21 

PE2 - 11 58 

PE3 - 6 31 

VE1 3 - 15 

VE2 0 - 0 

VE3 3 - 15 

 

3.1.3. Describing Phase: Interpretation and Presentation of Findings 

As shown in Figure 2, several students struggled to accurately position the mapped 

points in their visual representation. Additionally, some responses demonstrated 

misplacement of domain and codomain elements, leading to incorrect representations of the 

given transformation. These errors were categorized as visualization errors, which were then 

coded into three specific indicators presented in Table 4. 
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Errors related to conceptual understanding were also prevalent. Figures 5 and 6 

illustrate responses in which participants identified the mapping as a function but failed to 

recognize that transformations require bijectivity. These conceptual errors reflect 

misunderstandings of transformation properties and were further classified into four 

indicators (see Table 2). Similarly, Figure 8 presents an example in which participants failed 

to complete the proof, proving only injectivity or surjectivity, but not both. In some cases, 

students attempted proof by contradiction but made logical errors in structuring their 

argument. These responses were classified as procedural errors, which were subsequently 

broken down into key indicators in Table 3. 

To quantify the frequency of these errors across participants, a systematic data 

recording process was implemented. The total number of participants making each type of 

error was compiled and summarized in Table 5, providing an overview of the distribution of 

errors across both tasks. In particular, visual errors were only observed in Task 1, as this task 

focused on how students represented the given mapping. Three students made VE1 errors, 

while another three made VE3 errors, resulting in a total of six students with incorrect 

visualizations. 

Conceptual errors (CE) and procedural errors (PE) were observed in Task 2, as this 

task required formal proof construction. The data show that 4 participants committed CE1 

errors, meaning they failed to understand that transformations must be bijective. These 

participants left the proof section blank, as confirmed through interviews. No students were 

classified under PE1 errors, as all those who attempted the proof successfully established 

that each domain element had a unique image in the codomain. Additionally, conceptual 

errors were also evident in Task 1. The data reveal that 6 participants, who struggled with 

visualization (VE1 and VE2), were unable to articulate their understanding of the function 

concept when questioned (CE4). Interestingly, a participant who left Task 2 blank was still 

able to answer Task 1 correctly. 

As presented in Tables 2 and 3, a strong relationship was observed between CE2 and 

PE2 (errors in proving injectivity), as well as between CE3 and PE3 (errors in proving 

surjectivity). Specifically, 11 students made both CE2 and PE2 errors, indicating that the 

same individuals struggled with proving injectivity. Additionally, 6 participants made both 

CE3 and PE3 errors by failing to prove surjectivity. Among these, 4 participants made all 

four errors (CE2, CE3, PE2, and PE3), indicating difficulty in both proof components. In 

total, 17 students made errors in Task 2. 

These findings systematically present the frequency of errors observed in participants 

responses, offering a quantitative overview of their difficulties in both visualizing and 

proving transformations. This analysis lays the groundwork for further discussion on the 

potential learning obstacles that contributed to these errors. Theoretical perspectives on 

learning obstacles, as outlined by (Brousseau, 2002), categorize these obstacles into three 

main types: (1) Epistemological Obstacles – These obstacles arise when students struggle to 

apply learned knowledge to new or complex contexts. Difficulties in proof construction, 

such as an inability to transfer the concepts of injectivity, surjectivity, and bijectivity to 

formal reasoning, may indicate the presence of epistemological obstacles; (2) Didactical 

Obstacles – These obstacles stem from instructional design or the sequencing of learning 
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materials. If fragmented instruction contributes to students’ misconceptions—such as 

learning transformation properties without reinforcing their logical implications—didactical 

obstacles may be a contributing factor; and (3) Ontogenic Obstacles – These obstacles are 

related to students’ cognitive development and readiness to engage with abstract 

mathematical reasoning. Persistent difficulties in synthesizing conceptual, procedural, and 

visualization skills despite repeated exposure may suggest the presence of ontogenic 

obstacles linked to cognitive limitations. 
 

3.2. Discussion 

The Conceptual errors (CE) emerged as the most prevalent type of mistake in this 

study, significantly contributing to students' difficulties with proof construction. As shown 

in Table 5, CE1 was observed in 4 participants, CE2 was the most frequent, affecting 11 

students, followed by CE3, which was observed in 6 participants. Conceptual 

misunderstandings were also evident in CE4 (misconceptions about the function concept), 

which was noted in 6 participants, particularly those who struggled with visualization errors 

(VE1 and VE2) in Task 1. This suggests that difficulties in conceptualizing the fundamental 

properties of transformations constitute a major barrier for many participants, hindering their 

ability to effectively apply procedural and visual reasoning. 

This study highlights the interconnection of conceptual, procedural, and visual errors. 

The data reveal that students who struggled with visualization (VE1 and VE2) were unable 

to articulate their understanding of the function concept (CE4). This suggests that challenges 

in representing a transformation visually may be linked to deeper conceptual 

misunderstandings regarding functions and their properties. In Task 1, errors such as 

misplacing points or incorrectly aligning domain and codomain elements contributed to 

these visualization errors, further emphasizing the interplay between conceptual 

comprehension and the ability to accurately represent mathematical relationships. These 

findings align with previous research, such as Aulia et al. (2023), who reported that students 

frequently misplace points and struggle to determine the image of a transformation, 

indicating persistent difficulties in visualization. Similarly, Sundawan (2018) noted that 

students face challenges in visualizing geometric objects and understanding mathematical 

proof principles, reinforcing the idea that visualization errors are closely tied to conceptual 

misunderstandings. 

Furthermore, the study found that conceptual errors were strongly linked to 

procedural difficulties in proof construction. As presented in Tables 2 and 3, all 11 students 

who struggled with understanding injectivity (CE2) also made errors in proving injectivity 

(PE2), and all 6 students who misunderstood surjectivity (CE3) also encountered difficulties 

in proving surjectivity (PE3). For example, students who mistakenly treated the statement 

"if P ≠ R, then G(P) ≠ G(R)" as a final outcome, rather than recognizing it as a defining 

property of injective functions, faced significant challenges in completing their proofs. This 

misunderstanding led to incomplete proof attempts or the omission of crucial logical steps. 

This observation aligns with prior studies, such as Indahwati (2023) and Maifa (2019), who 

found that students struggle significantly in proof construction, particularly in structuring 

logical arguments and correctly applying transformation properties. Anwar et al. (2021) 
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further emphasized that Indonesian mathematics students tend to rely on rigid proof formats, 

suggesting a lack of deep conceptual engagement in proof reasoning. 

Our findings align with those of Noto et al. (2019), who observed that pre-service 

mathematics teachers tend to focus more on procedural knowledge than on developing a 

deeper conceptual understanding. However, the current study emphasizes that conceptual 

errors were the most prevalent, affecting students' ability to construct proofs. As shown in 

our data, students who struggled with the conceptual understanding of bijectivity, injectivity, 

and surjectivity also faced significant challenges in applying procedural proof strategies. 

This finding supports the notion that a solid understanding of the underlying concepts is 

crucial for successfully constructing valid mathematical proofs. While procedural 

knowledge is important, the interdependence between conceptual and procedural errors 

underscores the need for a deeper conceptual foundation to facilitate effective proof 

construction. 

The result of this study also align with the work of Kusuma and Setyaningsih (2015), 

who identified comparable difficulties in participants' understanding of geometric 

transformations. They observed that participants often struggled with applying formal 

transformation rules and constructing logical steps in proof construction. This finding 

consistent with the procedural difficulties we observed in this study, where students not only 

struggled to understand the concepts of injectivity and surjectivity but also faced challenges 

in applying these concepts in constructing valid proofs.  

Similarly, Aktaş and Ünlü (2017) found that students frequently struggled with 

visualizing geometric properties when working with transformations. In this study, this 

challenge was evident in Task 1, where 6 students made visualization errors (VE1 and VE3), 

particularly in accurately positioning points and aligning domain and codomain elements. 

These errors were not isolated; they were linked to a lack of understanding of fundamental 

mathematical properties, such as functions, as demonstrated by students who struggled to 

articulate the definition of a function (CE4). This suggests that visualization errors in this 

study were not merely technical mistakes but were influenced by deeper conceptual 

misunderstandings about the nature of geometric transformations. 

While previous studies have highlighted conceptual, procedural, and visualization 

difficulties in geometric transformations, this study extends their findings by explicitly 

analyzing the interconnections between these errors. Unlike prior research that examined 

these difficulties in isolation, our study demonstrates that conceptual misunderstandings are 

the root cause, influencing both procedural errors and visualization struggles. This represents 

a significant contribution, as it emphasizes the need to examine learning difficulties 

holistically rather than treating them as separate issues. 

Exploring potential learning obstacles that participants may encounter when studying 

transformation proofs is essential. This approach mirrors the work of Jatisunda et al. (2025), 

who identified learning obstacles faced by participants when learning geometric 

transformations. The purpose of such research is to minimize these obstacles in the future 

through various strategies, such as refining teaching materials based on identified learning 

barriers. As Rosita et al. (2019) suggest, one solution to improve learning is to design 

instructional materials tailored to the specific obstacles students encounter. This underscores 
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the importance of investigating learning obstacles in specific subjects to effectively address 

and mitigate them in future learning experiences. 

The results of this study indicate that the most significant learning obstacle 

encountered by participants is epistemological. Epistemological obstacles arise when 

participants are unable to apply their existing knowledge to more complex situations, even 

though they have acquired the necessary concepts. This was clearly observed in this study, 

where participants struggled to apply the concepts of injectivity, surjectivity, and bijectivity 

when constructing proofs or visualizing geometric transformations. Unlike prior research 

that merely categorized participants' difficulties, this study systematically analyzes how 

these errors contribute to epistemological obstacles, which further hinder participants' ability 

to construct proofs effectively. Noto et al. (2019) examined learning obstacles in a general 

sense without linking them to Brousseau’s framework, failing to categorize these obstacles 

specifically as ontogenic, didactical, or epistemological. Thus, this study contributes by 

establishing a connection between conceptual, procedural, and visualization errors and 

epistemological obstacles, offering a deeper understanding of the challenges pre-service 

mathematics teachers face in proving transformations. 

Suryadi (2019) explains that epistemological obstacles arise when students are 

unable to transfer or apply their acquired knowledge effectively to new situations. In this 

study, while participants had learned the basic definitions of transformations and their 

properties, they struggled to apply these concepts when constructing proofs or creating 

accurate visual representations. For example, many participants correctly identified that 

transformations are functions but failed to use this knowledge to prove injectivity or 

surjectivity. Similarly, when visualizing transformations, participants faced difficulty in 

using their understanding of functions to accurately depict the transformation in diagrams. 

These findings support the argument that conceptual knowledge, when not fully internalized, 

leads to further challenges in both procedural and visual reasoning (Beeler et al., 2024; 

Braithwaite & Sprague, 2021). 

The lack of alignment between participants' difficulties and didactical obstacles is 

evident from the data, as this study did not analyze instructional materials or teaching 

methods. Instead, the study relied on written tests and interviews to identify participants' 

difficulties. The primary challenge appeared to lie in participants' understanding and 

internalization of fundamental concepts, such as injectivity, surjectivity, and bijectivity, 

which were essential for constructing proofs and visualizing geometric transformations. 

While didactical obstacles can arise from teaching methods or material design, this study did 

not find evidence suggesting that these factors were significant contributors to students' 

struggles. Rather, the difficulties seemed to stem primarily from conceptual 

misunderstandings and the inability to transfer learned concepts to more complex tasks. 

Similarly, ontogenic obstacles, related to participants' cognitive development, 

typically emerge when learning tasks exceed or fall below students' developmental 

capabilities. While it is possible that some participants may have faced cognitive limitations, 

the errors observed were more indicative of difficulties in applying abstract concepts rather 

than failure to engage with tasks at an appropriate cognitive level. For example, many 

students struggled with fundamental concepts such as injectivity, surjectivity, and 
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bijectivity, which are essential for proof construction. This suggests that their cognitive 

development was not the primary obstacle, as these concepts are typically taught at this stage 

of their academic journey. The students' difficulties appear to be more rooted in their 

understanding and internalization of these concepts, pointing to epistemological obstacles 

rather than cognitive developmental barriers. 

The evidence gathered from this study strongly supports the conclusion that 

epistemological obstacles were the most significant learning obstacle for participants. These 

obstacles hindered participants' ability to construct valid proofs and accurately visualize 

geometric transformations, as they struggled to apply their conceptual understanding in new 

contexts. While didactical and ontogenic obstacles may contribute to certain learning 

difficulties, the findings of this study suggest that the primary challenge for students lies in 

their epistemological difficulties, particularly in applying learned concepts to more complex 

tasks. This distinction is critical, as it underscores the importance of addressing students' 

conceptual understanding to overcome the barriers that impede their success in mastering 

geometric transformations. 

 

4. CONCLUSION 

The findings of this study revealed three distinct types of errors encountered by pre-

service mathematics teachers when constructing proofs for geometric transformations: 

visualization errors, conceptual errors, and procedural errors. Further analysis demonstrated 

that conceptual errors served as the fundamental source of difficulty, as they directly 

influenced both procedural errors and visualization errors. This deeper investigation into the 

errors indicated that the primary learning obstacle faced by participants is epistemological 

obstacle, as they were unable to transfer their conceptual knowledge to new contexts, 

particularly in the domain of proof construction and geometric representation. However, this 

study is limited to identifying learning obstacles without providing instructional 

interventions to address them. Additionally, this research did not include a document 

analysis of the instructional materials used by the lecturers, which could offer valuable 

insights into didactical obstacles. Therefore, future research could further expand by 

exploring potential didactical obstacles in the teaching of geometric transformations, 

specifically by examining how teaching materials and strategies might contribute to students' 

difficulties in mastering the topic. Future research should build upon these findings by 

developing targeted teaching strategies that specifically address epistemological obstacles, 

enabling students to strengthen their conceptual understanding and apply it effectively in 

proof construction and visualization tasks. 
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