Main Article Content

Abstract

ABSTRAK Pembelajaran matematika di tingkat perguruan tinggi lebih banyak menggunakan pendekatan berbasis masalah. Mahasiswa diberikan masalah dan diminta memecahkannya. Pada proses pemecahan masalah pada umumnya yang dilakukan adalah problem lansung solving, melewatkan argumentasi, padahal argumentasi merupakan hal penting. Pada argumentasi akan terlihat proses berpikir yaitu data apa yang diketahui, dukungan dari definisi atau teorema yang digunakan, sanggahan apa yang dapat dilakukan, sehingga sampai pada klaim. Seseorang dikatakan memahami masalah secara bermakna apabila ia dapat mengemukakan alasan, data, jaminan, idea bahkan klaim dalam masalah secara benar. Karena itu, untuk memeriksa apakah mahasiswa telah memiliki kemampuan mengemukakan masalah matematika secara bermakna, dapat diestimasi melalui kemampuan mahasiswa menyampaikan secara lisan atau menuliskan kembali idea dalam argumentasi matematis. Penelitian ini bertujuan untuk mengetahui peningkatan kemampuan argumentasi matematis mahasiswa pendidikan matematika dalam pembelajaran kalkulus 1. Untuk meningkatkan kemampuan argumentasi matematis mahasiswa, perlu adanya upaya untuk menerapkan suatu pendekatan pembelajaran yang dapat memfasilitasi mahasiswa dalam berargumentasi. Penelitian eksperimen ini, dengan populasi seluruh mahasiswa pendidikan matematika di UHAMKA. Pemilihan sampel dalam penelitian ini dengan menggunakan purposif random sampling, dua kelas sebagai kelas eksperimen dan dua kelas sebagai kelas kontrol. Kelas eksperimen diberikan pembelajaran berbasis masalah (PBM), dan kelas kontrol diberikan pembelajaran konvensional (KS). Sampel yang terlibat sebanyak 141 orang mahasiswa. Instrumen yang digunakan adalah soal tes kemampuan argumentasi matematis. Analisis data menggunakan uji-t, dan ANOVA satu dan dua jalur. Berdasarkan hasil analisis data, diperoleh kesimpulan bahwa terdapat perbedaan secara signifikan peningkatan kemampuan argumentasi matematis mahasiswa antara kelompok PAM (atas, tengah dan bawah) pada pendekatan PBM. Perbedaan peningkatan terjadi pada kelompok PAM atas dengan tengah. Secara signifikan peningkatan kemampuan argumentasi matematis mahasiswa berdasarkan kelompok PAM pada pendekatan PBM lebih baik dibandingkan dengan peningkatan kemampuan argumentasi matematis yang memperoleh pembelajaran KS. Terdapat perbedaan peningkatan yang signifikan kemampuan argumentasi matematis mahasiswa pada masing-masing kelompok PAM dengan pendekatan PBM dan KS. Secara bersamaan kedua faktor kelompok PAM dan pendekatan pembelajaran memberikan pengaruh yang signifikan terhadap peningkatan kemampuan argumentasi matematis mahasiswaKata Kunci    :   Argumentasi matematis, Pembelajaran berbasis masalah ABSTRACT Learning mathematics at the college level more problem-based approach. Students are given a problem and asked to solve it. In the problem-solving process is generally carried out direct problem solving, skip the argument, but the argument is important. On the argument would seem to think that the data is what is known, the support of the definition or theorem is used, a rebuttal of what to do, so until the claim. Someone said to understand the problem substantially if he can give the reasons, the data, assurance, ideas and even claims in issue correctly. Therefore, to check whether the student has the ability significantly raised the issue of mathematics, can be estimated by the ability of the students expressed orally or rewrite the idea in mathematical argument. This study aims to determine the increase in the ability of mathematical argumentation mathematics education students in learning calculus 1. To improve student mathematical argument, should the effort to implement a learning approach that can facilitate students in arguing. This experimental study, the entire student population in UHAMKA mathematics education. The selection of the sample in this study using purposive random sampling, two classes as experimental class and two classes as the control class. Given experimental class problem-based learning (PBM), and the class is given control of conventional learning (KS). Samples were involved as many as 141 students. The instrument used is a matter of testing the ability of mathematical argumentation. Data analysis using t-test and ANOVA one and two lanes. Based on the results of data analysis, it is concluded that there are significant differences in improvement of student mathematical argumentation ability between groups PAM (top, middle and bottom) in the PBM approach. The difference in the increase occurred in the group of PAM on the middle. Significantly increased the ability of the student mathematical arguments based on the PAM group PBM approach is better than the increase in the ability to obtain a mathematical argumentation learning KS. There are significant differences in improvement of mathematical argumentation ability of students in each group PAM PBM approach and KS. Taken together these two factors and the PAM group learning approach has a significant influence on the improvement of the ability of the student mathematical arguments.Keywords:            mathematical argumentation, problem-based learning 

Article Details

References

  1. Andriessen, J., Baker, M., & Suthers, D. (2003). Argumentation, computer support, and the educational context of confronting cognitions. In J. Andriessen, M. Baker & D. Suthers (Eds.), Arguing to learn: Confronting cognitions in computer-supported collaborative learning environments (pp. 1-25). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  2. Conner, A. (2008). Expanded Toulmin diagrams: A tool for investigating complex activity in classrooms. In O. Figueras, J. L. Cortina, S. Alatorre, T. Rojano, & A. Sepulveda (Eds.), Proceedings of the Joint Meeting of the International Group for the Psychology of Mathematics Education 32 and the North American Chapter of the International Group for the Psychology of Mathematics Education XXX. Vol. 2. (pp. 361-368). Morelia, Mexico: Cinvestav-UMSNH.
  3. Cross, D., (2007) Creating Optimal Mathematics Learning Environments: Combining Argumentation and Writing to Enhance Achivement. Disertasi University of Georgia: Tidak diterbitkan.
  4. Driver, R., Newton, P., and Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312.
  5. Duch, B.J., Groh, S.E., dan Allen, D.E. (2001). Why Problem-Based Learning: A Case Study of Institutional Change in Undergraduate Education. Dalam B.J. Duch, S.E. Groh, dan D.E. Allen (Eds): The Power of Problem-Based Learning. Virginia, Amerika: Stylus Publishing.
  6. Ennis, R.H. (1981). Critical Thinking. United States of America: Prentice-Hall, Inc.
  7. Hake, R.R. (2007). Design-Based Research in Physics Education Research: A Review, in A.E. Kelly, R.A. Lesh, & J.Y. Baek, eds. (in press), Handbook of Design Research Methods in Mathematics, Science, and Technology Education.
  8. Halpern, D. F. (2003). Thought and Knowledge: An Introduction to Critical Thinking (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates.
  9. Inch, E.S., Warnick, B., & Endres, D. (2006). Critical Thinking and Communication: The Use of Reason in Argument. Boston: Pearson Education Inc.
  10. Inglis, M., Mejia-Ramos, J.P., & Simpson, A. (2007). Modelling Mathematical Argumentation: The Importance of Qualification. Educational Studies in Mathematics.
  11. Jonassen, D.H. (2010). Learning to Solve Problem: An instructional guide design. San Fransisco: Pfeiffer
  12. Kuhn, D. (1991).The skills of argument. Cambridge University Press.
  13. National Council of Teachers of Mathematics (2000). Principles and Standards for School Mathematics. [Online]. Tersedia:http:// www.nctm.org/ standars/overview.htm [25 Januari 2011]
  14. Newton, P., Driver, R., & Osborne, J. (1999). The Place of Argumentation in The Pedagogy of School Science. International Journal of Science Education, 21(5), 553–576.
  15. Nussbaum, E. M., & Sinatra, G. M. (2003). Argument and Conceptual Engagement. Contemporary Educational Psychology, 28, 384-395.
  16. Osborne, J. (2005). The Role of argument in Science Education. K. Boesma, M. Goedhart, O. De Jong, & H. Eijkelhof [Eds]. Research and Quality of Science Education. Dordrecht, Nederlands: Spinger.
  17. Stein, N., & Bernas, R. (1999). The Early Emergence of Argumentative Knowledge and Skill. In J. Andriessen & P. Coirier (Eds), Foundations of Argumentative Text Processing (pp. 97-116). Amsterdam: Amsterdam University Press.
  18. Toulmin, S.E. (2003). The Uses of Argument. New York: Cambridge University Press
  19. Von Aufschnaiter, C., Erduran, S., Osborne, J. & Simon, S. (2008). Arguing to Learn and Learning to Argue: Case Studies of How Students' Argumentation Relates to Their Scientific Knowledge. Journal of Research in Science Teaching, 45(1), 101-131.
  20. Voss, J.F., Perkins, D.N., & Segal, J.W. (1991). Informal Reasoning and Education. Hillsdale , NJ: Erlbaum.
  21. Zeidler, D. L. (1997). The Central Role of Fallacious Thinking in Science Education. Science Education, 81, 483–496